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Abstract

This paper describes the embedded block coding algorithm at the heart of the JPEG 2000 image compression
standard. The paper discusses key considerations which led to the development and adoption of this algorithm, and also
investigates performance and complexity issues. The JPEG 2000 coding system achieves excellent compression

performance, somewhat higher (and, in some cases, substantially higher) than that of SPIHT with arithmetic coding, a
popular benchmark for comparison The algorithm utilizes the same low complexity binary arithmetic coding engine as
JBIG2. Together with careful design of the bit-plane coding primitives, this enables comparable execution speed to that
observed with the simpler variant of SPIHT without arithmetic coding. The coder offers additional advantages

including memory locality, spatial random access and ease of geometric manipulation.r 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

JPEG 2000 [2] is a new image compression
standard, developed under the auspices of ISO/
IEC JTCI/SC29/WG1 (commonly known as the
JPEG committee). The standard departs radically
from its better known predecessor, JPEG [3]. In
place of the discrete cosine transform (DCT),
JPEG 2000 employs a discrete wavelet transform
(DWT). Whereas arithmetic coding and successive
approximation are options in JPEG, they are
central concepts in JPEG 2000. The coding
mechanisms themselves are more efficient and
support more flexible, finely embedded representa-
tions of the image. The JPEG 2000 algorithm also

inherently supports good lossless compression,
competitive compression of bi-level and low bit-
depth imagery, and bit-streams which embed good
lossy representations of the image within a lossless
representation.
JPEG 2000 places a strong emphasis on

scalability, to the extent that virtually all JPEG
2000 bit-streams are highly scalable. In order to
support the needs of a wide variety of applications,
different progression orders are defined. The
scalability property, in its different forms, pertains
to the ordering of information within the bit-
stream. However, as discussed next, the coding
process plays a key role. In general, dependencies
introduced during this process can destroy one or
more degrees of scalability. Thus, while the DWT
provides a natural framework for scalable image
compression, the coding methods described in this
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paper are key to the realization of the potential
derived from this framework. Therefore, one goal
of this Introduction is to precisely define the main
notions of scalability involved, discussing their
implication in the design of the coding scheme.
A resolution-scalable bit-stream is one from

which a reduced resolution may be obtained
simply by discarding unwanted portions of the
compressed data. The lower resolution representa-
tion should be identical to that which would have
been obtained if the lower resolution image were
compressed directly. The DWT is an important
tool in the construction of resolution-scalable bit-
streams. As shown in Fig. 1, a first DWT stage
decomposes the image into four subbands, de-
noted LL1, HL1 (horizontally high-pass), LH1

(vertically high-pass) and HH1. The next DWT
stage decomposes this LL1 subband into four more
subbands, denoted LL2, LH2, HL2 and HH2. The
process continues for some number of stages, D;
producing a total of 3Dþ 1 subbands whose
samples represent the original image. The total
number of samples in all subbands is identical to
that in the original image.

The DWT’s multi-resolution properties arise
from the fact that the LLd subband is a reasonable
low resolution rendition of LLd�1; with half the
width and height. Here, the original image is
interpreted as an LL0 subband of highest resolu-
tion, while the lowest resolution is represented
directly by the LLD subband. The LLd subband,
0pdoD; may be recovered from the subbands at
levels d þ 1 through D by applying only D� d
stages of DWT synthesis. So long as each subband
from DWT stage d; 0odpD, is compressed
without reference to information in any of the
subbands from DWT stages d 0; 0pd 0od; we may
convert a compressed image into a lower resolu-
tion compressed image, simply by discarding those
subbands which are not required. The number of
resolutions available in this way is Dþ 1.
A second type of scalability arises when the

compressed bit-stream contains elements which
can be discarded in order to obtain a lower quality
(higher distortion) representation of the subband
samples. We refer to this as distortion scalability.
Ideally, the reduced quality representations ob-
tained by discarding appropriate elements from
a distortion scalable bit-stream can be decoded
to reconstruct the original image with a fidelity
approaching that of an ‘‘optimal’’ coder, tailored
to produce the same bit-rate as the scaled
bit-stream.
Most practical means of achieving this goal

involve some form of bit-plane coding, whereby
the magnitude bits of the subband samples are
coded one by one from most significant to least
significant. Discarding least significant bits is
equivalent to coarser quantization of the original
subband samples. The terms ‘‘SNR scalability’’,
‘‘successive approximation’’ and ‘‘bit-rate scalabil-
ity’’ have also been used in connection with this
type of scalability.
Although resolution scalability (the ability to

discard high frequency subbands) provides a crude
mechanism for decreasing the bit-rate and increas-
ing distortion, this is not usually an efficient
mechanism for trading distortion for compressed
size. It has been observed that discarding subbands
from a compressed bit-stream generally produces
lower resolution images with such small distortion
(and large bit-rate) as to be inappropriate for
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Fig. 1. DWT with D ¼ 3 stages.
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applications requiring significant compression.
In order to produce a family of successively lower
image resolutions with a consistent level of
perceived or objective distortion (e.g., a consistent
mean squared error), the multi-resolution trans-
form should be combined with distortion scalable
coding.
Unfortunately, due to possible dependencies

introduced during the coding process, the combi-
nation of a wavelet transform with bit-plane
coding does not guarantee bit-streams that are
both resolution-scalable and distortion-scalable.
Furthermore, the order in which information
appears within the compressed bit-stream can
have a substantial impact on the resources
required to compress or decompress a large image.
The zero-tree coding structure [14] provides us
with a useful example of the adverse consequences
of excessive interaction between coding and
ordering. Shapiro’s original EZW algorithm [14]
and Said and Pearlman’s significantly enhanced
SPIHT algorithm [12] provide excellent examples
of embedded image compression. These algo-
rithms have rightly received tremendous attention
in the image compression community. However,
the coding dependencies introduced by these
algorithms dictate a distortion-progressive order-
ing of the compressed bits, as zero-trees involve
downward dependencies between the subbands
produced by successive DWT stages. These
dependencies interfere with resolution scalability:
no subset of the embedded bit-stream corresponds
to the result of compressing a lower resolution
image. Moreover, the encoder and decoder typi-
cally require a random access buffer, with storage
for every subband sample in the image. Once
compressed in this manner, the bit-stream cannot
be reordered so as to support decompressors with
reduced memory resources.
The JPEG standard also involves coding depen-

dencies which prohibit some useful orderings. In
its hierarchical refinement mode, multi-resolution
image hierarchies are represented using a Lapla-
cian pyramid structure which requires lower
resolutions to be fully decoded before meaningful
decoding of a higher resolution image can take
place. This representation interferes with the
distortion scalability offered by JPEG’s successive

approximation mode, since it is not possible to
decompress a subset of the bit-planes across all
resolution levels. This problem is dual to the one
observed for zero-tree coding. In JPEG’s progres-
sive modes, any scalable bit-stream necessarily
involves multiple scans through the entire image.
Moreover, these progressive scans use different
coding techniques to those specified by the
sequential mode. As a result, they cannot generally
be collapsed back into a sequential representation
without transcoding the compressed bit-stream.
The arguments advanced above suggest that

one should endeavour to decouple the process of
efficiently coding subband samples from the
ordering of the compressed bit-stream. The
separation of information coding and information
ordering is indeed a key consideration in the
design of the JPEG 2000 algorithm. As a result,
and in contrast to the above examples, the JPEG
2000 standard supports spatially progressive orga-
nizations which allow decompressors to work
through the image from top to bottom. Informa-
tion may progress in order of increasing resolu-
tion, in order of increasing quality across all
resolutions, or in sequential fashion across all
resolutions and qualities. The progression order is
independent of the coding techniques and may be
adjusted at will, without recourse to transcoding.
JPEG 2000 also allows resource constrained
decompressors to recover a reduced resolution
version of an image which may be too large to
decompress in its entirety.
Of course, it is not possible to completely

decouple the coding and ordering of information,
since efficient coding necessarily introduces depen-
dencies. Sources of such dependencies include the
use of conditional coding contexts, indivisible
codes (e.g., vector, run-length or quad-tree codes)
and adaptive probability models. There is also a
limit to the granularity at which we can afford to
label individual elements of the compressed bit-
stream for subsequent reordering.
A natural compromise is to partition the

subband samples into small blocks and to code
each block independently. The various dependen-
cies described above may exist within a block but
not between different blocks. The size of the blocks
determines the degree to which one is prepared to
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sacrifice coding efficiency in exchange for flexibility
in the ordering of information within the final
compressed bit-stream. This block coding para-
digm is adopted by JPEG 2000, based on the
concept of Embedded Block Coding with Optimal
Truncation (EBCOT) [17]. Each block generates
independent bit-streams which are packed into
quality layers. In order to generate the quality
layers, the independent bit-streams are in turn
subdivided into a large number of ‘‘chunks’’.
While preserving the ordering of chunks within a
block, the compressor is free to interleave chunks
from the various blocks in any desired fashion,
thus assigning incremental contributions from
each block to each quality layer. The independent
bit-streams can be truncated at the end-points of
these chunks, which are referred to as truncation
points.
The selection of truncation points raises, again,

an ordering problem, since it affects the rate-
distortion properties of the overall image repre-
sentation. In a bit-plane coding scheme, bit-plane
end-points are natural truncation points for the
embedded bit-stream. However, the availability of
a finer embedding, with many more useful trunca-
tion points, is a key element in the success of the
EBCOT paradigm. To achieve a finer embedding,
the sequence in which bits from different samples
are coded is data dependent. This sequence tends
to encode the most valuable information (in the
sense of reducing the distortion of the recon-
structed image the most) as early as possible. The
embedded block coder uses context modelling to
address both the ordering and the arithmetic
coding of the events. The concept of adaptive
ordering through context modeling was intro-
duced independently and in somewhat different
forms in [5,8]. It is also closely related to the
coding sequence employed in the SPIHT [12] and,
to a lesser extend, EZW [14] algorithms. Rather
than pursuing a totally adaptive approach, as in
[5], JPEG 2000 imposes reasonable assumptions
on the data, defining context-dependent ‘‘frac-
tional bit-planes’’, in the spirit of [8].
Thus, the block coding concept in JPEG 2000

and the embedded coder itself draw heavily from
the EBCOT algorithm [17], which itself builds
upon the contributions of other works; however,

there are some notable differences as well as a
number of mode variations which can have
significant practical implications. In this paper,
our goal is to provide the reader with an
appreciation for the salient features of the algo-
rithm, as well as some of the considerations which
have contributed to its development.
The rest of this paper is organized as follows. In

Section 2, we discuss the EBCOT paradigm and its
advantages. In Section 3, we present the primitive
coding operations which form the foundation of
the embedded block coding strategy. In Section 4,
we introduce the concept of fractional bit-planes,
and discuss the principles behind it. In Section 5,
we provide some indication of the performance of
the algorithm, while in Section 6 we discuss its
complexity, both for software and hardware
implementations. Finally, in Section 7, we present
variations on the algorithm, which are supported
by Part 1 of the standard.

2. The EBCOT paradigm

2.1. Independent code-blocks

Within the EBCOT paradigm adopted by JPEG
2000, each subband is partitioned into relatively
small blocks (e.g., 64� 64 or 32� 32 samples)
which we call ‘‘code-blocks’’. This is illustrated in
Fig. 2. Each code-block, Bi; is coded indepen-
dently, producing an elementary embedded bit-
stream, ci: It is convenient to restrict our attention
to a finite number of allowable truncation points,
Zi þ 1; for code-block Bi; having lengths, L

ðzÞ
i ;

with

0 ¼ L 0ð Þ
i pL 1ð Þ

i p?pL Zið Þ
i :

In the present development we are not concerned
with the details of the embedded block coding alg-
orithm, or the determination of these truncation
points; these are the subject of Sections 3 and 4.
We assume that the overall reconstructed image

distortion can be represented as a sum of distor-
tion contributions from each of the code-blocks
and let D

ðzÞ
i denote the distortion contributed by

block Bi; if its elementary embedded bit-stream is
truncated to length L

ðzÞ
i : Calculation or estimation
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of D
ðzÞ
i depends upon the subband to which block

Bi belongs. For most of the ensuing discussion,
however, we may simply consider the image as
being composed of a collection of blocks, Bi;
without regard for the subbands to which their
samples belong.
Since the code-blocks are compressed indepen-

dently, we are free to use any desired policy for
truncating their embedded bit-streams. If the
overall length of the final compressed bit-stream
is constrained by Lmax; we are free to select any set
of truncation points, {zi}, such thatX
i

L
ðzÞ
i pLmax:

Of course, the most attractive choice is that which
minimizes the overall distortion,

D ¼
X
i

D
zið Þ
i :

The selection of truncation points may be deferred
until after all of the code-blocks have been
compressed, at which point the available trunca-
tion lengths, L

ðzÞ
i ; and the associated distortions,

D
ðzÞ
i ; can all be known. For this reason, we refer to

the optimal truncation strategy as one of post-
compression rate-distortion optimization (PCRD-
opt). For details of the PCRD-opt algorithm, the
reader is referred to [17].
A chief disadvantage of independent block

coding would appear to be that it is unable to
exploit redundancy between different blocks with-
in a subband or between different subbands. In
fact, an important premise of zero-tree algorithms
such as EZW and SPIHT is that substantial
redundancy exists between ‘‘parent’’ and ‘‘child’’
samples within the subband hierarchy. Somewhat
surprisingly, these disadvantages are more than
compensated by the fact that the contributions of
each code-block to the final bit-stream may
be independently optimized by the PCRD-opt
algorithm.

2.2. Quality layers

The overall compressed bit-stream is con-
structed by packing contributions from the various
code-block bit-streams, ci; together in some fash-
ion. We use the term ‘‘pack-stream’’, to distinguish
this overall representation from the individual
block bit-streams. The simplest pack-stream orga-
nization consistent with the EBCOT paradigm is
illustrated in Fig. 3. In this case, the optimally
truncated block bit-streams, c

ðziÞ
i ; are simply

concatenated, with length tags inserted to identify
the contribution from each code-block.
This simple pack-stream is resolution-scalable,

since each resolution level consists of a well-
defined collection of code-blocks, each of which is
explicitly identified by means of the length tags.
The pack-stream also possesses a degree of spatial
scalability. So long as the subband synthesis filters
have finite support, each code-block influences
only a finite region in the reconstructed image.
Thus, given a spatial region of interest, the
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Fig. 2. Division of subbands into code-blocks. Here, code-

blocks have the same dimensions in every subband.

Fig. 3. Simple pack-stream formed by concatenating optimally

truncated code-block bit-streams.
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relevant code-blocks may be identified and
extracted from the pack-stream.
The simple pack-stream of Fig. 3 is not distor-

tion-scalable, even though its individual code-
blocks have embedded representations. The pro-
blem is that the pack-stream offers no information
to assist in the construction of a smaller pack-
stream whose code-block contributions are opti-
mized in any way. To resolve this difficulty, the
EBCOT algorithm [17] introduces a quality layer
abstraction, as illustrated in Fig. 4. Only 6 code-
blocks are shown for the sake of illustration. There
are a total of L quality layers, labelled 0 through

L�0: The first layer, 0; contains optimized code-

block contributions, having lengths L
ðz0
i
Þ

i ; which

minimize the distortion, D0 ¼
P
i D

ðz0
i
Þ

i ; subject to

a length constraint,
P
i L

ðz0
i
Þ

i pL0max: Subsequent
layers, l; contain additional contributions from

each code-block, having lengths L
ðzl
i
Þ

i � L
ðzl�1
i

Þ
i ;

which minimize the distortion,

Dl ¼
X
i

D
zl
ið Þ

i

subject to a length constraint,X
i

L
ðzl
i
Þ

i pLl
max:

Although each quality layer conceptually contains
a contribution from every code-block, we empha-
size the fact that some or even all of these
contributions may be empty. In the example of

Fig. 4, code-block B3 makes no contribution to
layer 1: A distortion-scalable pack-stream may be
constructed by including sufficient information to
identify the contribution made by each code-block
to each quality layer. Moreover, quality progres-
sive organizations are clearly supported by sequen-
cing the information in the manner suggested by
the numbering in Fig. 4.
If a quality progressive pack-stream is truncated

at an arbitrary point, the decoder can expect to
receive some number of complete quality layers,
followed by some fraction of the blocks from the
next layer. In the example of Fig. 4, the third
quality layer, 2; is truncated before code-block
B4: In this case, the received prefix will not be
strictly optimal in the PCRD-opt sense. However,
this form of sub-optimality may be rendered
negligible by employing a large number of layers.
On the other hand, more layers imply a larger
overhead to identify the contributions made by
each block to each layer.
When a large number of layers are used, some

effort must be invested in efficiently coding the
auxiliary information which identifies the various
code-block contributions. JPEG 2000 provides a
‘‘second tier’’ coding strategy for this type of
information. The idea of separating the coding
process into two tiers was introduced in [17] and
indeed the second tier coding mechanisms used by
JPEG 2000 are essentially those described there.
We shall not discuss them further in the present
text.

2.3. EBCOT advantages

At this point, it is worth summarizing some of
the benefits which the EBCOT paradigm imparts
to JPEG 2000.
Flexible organization: EBCOT pack-streams

possess resolution scalability, distortion scalability
(so long as multiple quality layers are used) and a
degree of spatial scalability. When multiple image
components are compressed (e.g., colour compo-
nents), these components form a fourth dimension
of scalability. Progressions along all four dimen-
sions are supported by the JPEG 2000 standard.
Custom quality interpretations: Since each qual-

ity layer may contain arbitrary contributions from

Fig. 4. Quality layers in JPEG 2000. Numbers indicate the

sequence of code-block contributions required for a quality

progressive pack-stream.
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each of the code-blocks, the notion of quality may
be adapted to application specific measures of
significance. By contrast with EZW, SPIHT and
other embedded compression algorithms, the
EBCOT paradigm allows code-blocks to be
marginalized or entirely suppressed in lower
quality layers when the corresponding spatial
regions or frequency bands are known to be less
significant for some application.
Local processing: Independent coding allows

local processing of the samples in each code-block,
which is especially advantageous for hardware
implementations. Independent coding also intro-
duces the possibility of highly parallel implemen-
tations, where multiple code-blocks are encoded or
decoded simultaneously. For very large images,
spatially oriented progressions of the pack-stream
may be used in conjunction with incremental
processing of the subband/wavelet transform to
facilitate ‘‘streaming’’. In this case, it is sufficient to
buffer only a local window into the pack-stream,
the image and its subbands. In this way, imple-
mentation memory can be much smaller than the
image which is being compressed or decompressed.
This same property allows for efficient rotation
and flipping of the image during decompression.
Efficient compression: As noted above, the use of

PCRD optimization can more than compensate
for the small efficiency losses arising from the
imposition of independent block coding. The
algorithm is also able to accommodate spatially
varying and/or image dependent measures of
distortion. One interesting example arises in visual
perception, where local activity can mask the
visibility of certain types of compression artifacts.
A masking-sensitive distortion measure and pro-
mising experimental results are provided in [17].
Compressed domain manipulation: Cropping an

image from any boundary affects only those
subband samples whose synthesis waveforms
intersect with the cropped image region. Code-
blocks containing these samples must be re-coded,
but the remaining (interior) code-blocks are
unaffected by cropping. This, together with the
DWT realignment capabilities offered by JPEG
2000, allows images to be repeatedly cropped from
any boundary without the buildup of compression
artefacts commonly experienced with other schemes

such as JPEG. It is also possible to flip, transpose
and rotate images by multiples of 901, by
performing only local block transcoding opera-
tions. Repeated application of these transforma-
tions can also be free from com-pression noise
build-up. For further details see [18].
Error resilience: Errors encountered in any

code-block’s bit-stream will clearly have no
influence on the other blocks. This, together with
the natural prioritization of information induced
by embedded block coding and quality layers,
allows for the construction of powerful unequal
protection strategies for error prone environments.

3. Bit-plane coding

The coding of code-blocks in JPEG 2000
proceeds by bit-planes. Bit-plane coding naturally
arises in the framework of embedded quantization,
as discussed in Section 3.1. In Section 3.2, we show
how coding proceeds in order to derive an
embedded bit-stream, and we discuss the impor-
tance of data dependent ordering strategies for
achieving a fine embedding of the information.
The remainder of the section is devoted to a
detailed study of the primitive context modeling
and coding operations which form the foundation
of the embedded block coding strategy.

3.1. Embedded quantization

Since each code-block is to be represented by an
efficient embedded bit-stream, prefixes of the bit-
stream must correspond to successively finer
quantization of the block’s sample values. In fact,
the underlying quantizers are inevitably embedded
[21, Section 4B]. In the ensuing discussion we
restrict our attention to the practically appealing
case of embedded deadzone quantization.
A deadzone quantizer with step size D yields

quantization indices

q ¼ sign xð Þ
xj j
D

þ t
� �

; ð1Þ

where x denotes a subband sample from the code-
block and t is a parameter controlling the width of
the central deadzone. When t ¼ 1

2; the quantizer is
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uniform, while t ¼ 0 corresponds to the case in
which the deadzone width is 2D: The quantization
intervals, denoted ð0Þ

q ; are illustrated in Fig. 5.
Let w ¼ signðxÞ and v ¼ qj j denote the sign and

magnitude of q:1 Also, let

v pð Þ ¼
v

2p

j k
denote the value formed by dropping p least
significant bits (LSBs) from v ¼ vð0Þ. Employing
the easily verified identity,

ab c
b

� �
¼
a

b

j k
; 8aAR and bAN;

we see that w and vðpÞ are the sign and magnitude of
the index, qðpÞ; obtained using the coarser quantizer

q pð Þ ¼ sign xð Þ
xj j
2pD

þ
t
2p

� �
:

Fig. 5 illustrates the corresponding quantization
intervals,

ðpÞ
qðpÞ

:

This family of deadzone quantizers has three
notable characteristics: (1) the step sizes are given
by DðpÞ ¼ 2pD; (2) the deadzone width parameters,
tðpÞ ¼ 2�pt; rapidly converge to 0 as p increases;

and (3) each quantization interval,
ðpÞ
qðpÞ

; is

embedded within a coarser interval,
ðpþ1Þ
qðpþ1Þ

: In
view of property (2), it makes sense to restrict our
attention to the case t ¼ 0: In this case, all
quantizers have the same structure, with a dead-
zone twice as wide as the other intervals. It is
worth noting, however, that the coding techniques
described in this section are applicable to the more
general case in which ta0: In fact, Part 2 of the
JPEG 2000 standard is expected to support such
general deadzone quantizers.

3.2. Coding and ordering

Let x½ j  � x½ j1; j2 denote the sequence of
subband samples belonging to the relevant code-
block, having height J1 and width J2; so that
0pj1oJ1 and 0pj2oJ2: Similarly, let w½ j  and

vðpÞ½ j  denote the sign and magnitude of the
corresponding embedded quantization indices.
Suppose that K is a sufficient number of bits to
represent any of the quantization index magni-
tudes, meaning that vðKÞ½ j  ¼ 0 for all j : Finally,
let vp½ j Af0; 1g be the LSB of vðpÞ½ j ; which is also
bit p of v½ j :We say that bits vp½ j  from all samples
in the code-block constitute ‘‘magnitude bit-
plane’’ p: There are at most K non-trivial
magnitude bit-planes. The value of K is signalled
separately for every code-block, when that code-
block first contributes to the JPEG 2000 pack-
stream. In fact, K itself is coded in a manner which
exploits redundancy between adjacent code-blocks
within the same subband. The particular coding
technique is known as ‘‘tag tree coding’’. For
further details regarding such second tier coding of
code-block summary information, the reader is
referred to [2,17].
An embedded bit-stream may be formed in the

following way. First, code the most significant
magnitude bit-plane, vK�1½ j ; together with the
sign, w½ j ; of any sample for which vK�1½ j a0: If
the bit-stream is truncated at this point, the
decoder can reconstruct the coarsest quantization
indices, qðK�1Þ½ j : Then code the next most
significant magnitude bit-plane, vK�2½ j ; including
the sign of any sample for which vK�2½ j  ¼ 1 and
vðK�1Þ½ j  ¼ 0: Proceed in this way for each
magnitude bit-plane, p; including the sign of those
samples for which vp½ j  is the most significant non-
zero bit. We refer to this process as bit-plane
coding and we use the term ‘‘bit-plane’’ loosely to
refer to both the magnitude and associated sign

Fig. 5. Family of embedded deadzone scalar quantizers.

1Strictly speaking, when q ¼ 0 the sign of q is indeterminate;

this will be reflected in the fact that it is not coded. It is

convenient here to associate w with the sign of the original

subband sample, y; which is the same as that of q whenever
qa0:
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information. If the bit-stream is truncated at the
end of bit-plane p; the decoder can reconstruct
quantization indices, qðpÞ½ j :
A variety of techniques may be employed to

code the magnitude and sign bits. An efficient bit-
plane coder, however, should exploit the substan-
tial redundancy which generally exists between
successive bit-planes. This goal may be achieved
using conditional arithmetic coding, which re-
quires the definition of a scanning order and a
context model. Early bit-plane coders [20,23]
processed the quantized subband samples follow-
ing a deterministic scan (line by line) within each
bit-plane.2 In principle, the order in which the
information is coded should have no impact on
coding efficiency, since the code length assigned by
any conditional probability model (through arith-
metic coding) can be matched by another model
which uses an arbitrary scanning order, by
appropriate decomposition of the corresponding
joint distribution. However, such a decomposition
may involve statistical dependencies between each
coded symbol and all previously coded symbols in
the current and previous bit-planes. Thus, in
practice, our adaptive assignment of conditional
probabilities may result in code lengths that do
depend on the sequence of coding events. Never-
theless, we find empirically that the particular
probability models used by JPEG 2000, which are
described in Section 3.3, yield code lengths for
each bit-plane which are largely insensitive to the
order in which information is coded.
In [9], bit-plane coding is formalized as a

sequence of steps aimed at providing the next
coded sample (for efficient embedding), and a
corresponding conditional probability distribution
(for efficient coding). The empirical observation
above suggests that, as proposed in [8], efficient
embedding (rather than efficient coding) should be
the decisive consideration in selecting the scanning
order. In the case of a deterministic scan, bit-plane
end-points are the only natural truncation points
for the embedded bit-stream. Truncation at any

other point must yield an expected distortion–rate
pair which lies strictly above the convex distor-
tion–rate curve associated with deadzone scalar
quantization. As explained in Section 2.2, quality
layers are constructed by applying a PCRD-opt
algorithm to optimize the code-block truncation
points. In order to provide a larger number of
useful truncation points, thereby enhancing the
effectiveness of the PCRD-opt algorithm, a finer
embedding is required than that offered by
deterministically scanned bit-plane coders. To
achieve such an embedding, information is coded
in a data dependent order. This order tends to
encode the most valuable information (in the sense
of reducing the distortion of the reconstructed
image the most) as early as possible [5,8,15,17].
Following [5,8], the embedded block coder

adopted by JPEG 2000 uses context modeling to
address both the ordering and coding of informa-
tion within each code-block. Moreover, JPEG
2000 imposes reasonable assumptions on the data,
defining context-dependent ‘‘fractional bit-planes’’,
in the spirit of [8]. The specific determination of
fractional bit-planes is described in Section 4. The
reader should note that the adaptive ordering of
information within each code-block is based on
information available to both the encoder and
decoder so that it need not be signalled explicitly.
Of course, this also means that the compressor
has no control over the coding order. This is
quite different to the ordering of code-block
contributions within the pack-stream, as de-
scribed in Section 2.2.

3.3. Conditional arithmetic coding of bit-planes

In this section we describe the bit-plane coding
primitives defined by the JPEG 2000 image
compression standard. At any given sample
location, j ; in any given bit-plane, p; we must
code the value of vp½ j  and possibly also the sign,
w½ j : These are binary events and we employ an
adaptive binary arithmetic coder. The specific
arithmetic coding variant employed by JPEG
2000 is the MQ coder, which is discussed further
in Section 6.1. For our present discussion it is
sufficient to understand the arithmetic coder as a
‘‘machine’’, which efficiently represents a sequence

2Although not originally described as such, zero-tree algo-

rithms such as SPIHT and EZW also amount to bit-plane

coding algorithms. The statement here concerning early bit-

plane coders is not intended to include such algorithms.
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of binary outcomes subject to the provision of
good probability estimates. The adaptive prob-
ability models evolve within a number of distinct
contexts, which depend upon information which
has already been coded. The specification of these
models is identical to that proposed in [17], being
independent of the order in which information is
actually coded.3 Ordering considerations are de-
ferred until Section 4.
Image subband samples tend to exhibit distribu-

tions which are heavily skewed toward small
amplitudes. As a result, when vðpþ1Þ½ j  ¼ 0; mean-
ing that x½ j A ðpþ1Þ

0 ; we can expect that x½ j  is also
very likely to be found in the smaller deadzone,
ðpÞ
0 : Equivalently, the conditional PMF,
fVp V ðpþ1Þj ðvp 0j Þ; is heavily skewed toward the out-
come vp ¼ 0: For this reason, an important
element in the construction of efficient coding
contexts is the so-called ‘‘significance’’ of a sample,
defined by

s pð Þ j½  ¼
1 if v pð Þ j½  > 0;

0 if v pð Þ j½  ¼ 0:

(

To decouple our description of the coding opera-
tions from the order in which they are applied, we
introduce the notion of a binary ‘‘significance
state’’, s½ j : At any point in the coding process,
s½ j  assumes the value of sðpÞ½ j  where p is the
most recent (least significant) bit for which
information concerning sample x½ j  has been
coded. Equivalently, we initialize the significance
state of all samples in the code-block to 0 at the
beginning of the coding process and then toggle
the state to s½ j  ¼ 1 immediately after coding the
first non-zero magnitude bit for sample x½ j :
We identify three different types of primitive

coding operations as follows. If s½ j  ¼ 0 we refer
to the task of coding vp½ j  as ‘‘significance coding’’,
since vp½ j  ¼ 1 if and only if the significance state
transitions to s½ j  ¼ 1 in this coding step. In the
event that the sample does become significant, we
must invoke a ‘‘sign coding’’ primitive to identify
w½ j : For samples which are already significant, the
value of vp½ j  serves to refine the decoder’s
knowledge of the non-zero sample magnitude.

Accordingly, we invoke a ‘‘magnitude refinement
coding’’ primitive.

3.3.1. Significance coding (normal mode)
The significance coding primitive involves a

normal mode and a run mode. We describe the
normal mode first. In this mode, one of the nine
different contexts is used to code the significance
(i.e., the value of vp½ j ) of a sample which is
currently insignificant (i.e., vðpþ1Þ½ j  ¼ 0). Context
selection is based upon the significance of the
sample’s eight immediate neighbours.
The context label, ksig½ j ; is formed from three

intermediate quantities,

kh j½  ¼ s j1; j2 � 1½  þ s j1; j2 þ 1½ ;

kv j½  ¼ s j1 � 1; j2½  þ s j1 þ 1; j2½ ;

kd j½  ¼
X
k1¼71

X
k2¼71

s j1 þ k1; j2 þ k2½ :

Samples which lie beyond the boundaries of the
relevant code-block are regarded as insignificant
for the purpose of constructing these three
quantities. Evidently, there are 45 possible combi-
nations of the three quantities, kh½ j ; kv½ j  and
kd½ j : A context reduction function is used to map
these 45 combinations into 9 distinct context
labels, ksig½ j : Details of the context reduction
mapping may be found in [17] or [2]. It suffices
here to note that the mapping is sensitive to the
orientation of the subband to which the relevant
code-block belongs.

3.3.2. Significance coding (run mode)
At moderate to high compression ratios, most of

the subband samples must be insignificant in all of
the bit-planes which are actually included in the
final pack-stream. To see this, observe that
whenever a sample becomes significant we must
code the significance event (usually with respect to
a conditional PMF skewed heavily toward insig-
nificance) and also the sign. The combined cost of
these two binary events is unlikely to be less than 2
bits and may be considerably more. Even those
samples which are eventually coded as significant,
may be insignificant for many of the initial bit-
planes.

3The one exception to this rule is given by the run mode

specified in Section 3.3.2.
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Since code-block samples are expected to be
predominantly insignificant, a run mode is intro-
duced to dispatch multiple insignificant samples
with a single binary symbol. The run mode serves
primarily to reduce complexity, although very
minor improvements in compression performance
are also typical. The run mode is entered if the
probability of significance is determined to be
sufficiently small. This determination is based on
the stripe-based scan discussed in Section 4 and
depicted in Fig. 6. Specifically, the run mode is
entered if and only if the following three condi-
tions hold simultaneously:
(1) Four consecutive samples (following the scan

shown in Fig. 6) must currently be insignif-
icant. That is, s½ j r ¼ 0 for 0pro4; where
j 0 ¼ j and j r is the rth position beyond j in
the scan.

(2) All four samples must currently have insignif-
icant neighbourhoods. That is, kh½ j r þ kv½ j r
þkd½ j r ¼ 0 for 0pro4:

(3) The group of four samples must be aligned on
a four sample boundary within the scan. As
we shall see in Section 4, the scanning pattern
itself works column by column on stripes of
four rows at a time. This means that
the samples must constitute a single stripe
column.

In run mode, a binary ‘‘run interruption’’
symbol is coded to indicate whether or not all
four samples remain insignificant in the current
bit-plane, p: Insignificance is identified by the

symbol 0, while a value of 1 means that at least one
of the four samples becomes significant. The run
interruption symbol is coded within its own
context, denoted krun ¼ 9:
If one or more of the four samples becomes

significant during the current bit-plane, p; the
insignificant run length, r; must also be coded,
followed by the sign of the first significant sample,
w½ j r: The remaining samples are then coded in
normal mode, until the conditions required for run
mode are encountered again. Experience shows
that the run length is nearly uniformly distributed,
which is also to be expected if samples transition to
significance with very low probability. For this
reason the 2-bit run-length, r; is coded one bit at a
time, starting with the most significant bit, using
a non-adaptive uniform probability model.

3.3.3. Sign coding
The sign coding primitive is invoked at most

once for any sample, x½ j ; immediately after the
significance coding operation in which the sample
first becomes significant. Most algorithms pro-
posed for coding subband sample values, whether
embedded or otherwise, treat the sign as an
independent, uniformly distributed random vari-
able, devoting 1 bit to coding its outcome. It turns
out, however, that the signs of neighbouring
sample values exhibit significant statistical redun-
dancy. Some arguments to suggest that this should
be the case are presented in [17,22].
The JPEG 2000 sign coding primitive employs

5 contexts. Context design is based upon the
relevant sample’s immediate four neighbours, each
of which may be in one of three states: significant
and positive; significant and negative; or insignif-
icant. There are thus 81 unique neighbourhood
configurations. For details of the symmetry con-
ditions and approximations used to map these 81
configurations to one of five context labels, ksign½ j ;
the reader is referred to [17].

3.3.4. Magnitude refinement coding
The magnitude refinement primitive is used to

code the next magnitude bit, vp½ j ; of a sample
which is already significant; i.e., sðpþ1Þ½ j  ¼ 1: This
information refines the coarser quantization index,
qðpþ1Þ½ j ; to the next finer index, qðpÞ½ j : As already

context window

st
ri

pe

Fig. 6. Stripe oriented scan. Refer to the discussion of the

significance propagation pass for an explanation of the symbols

used in this example.
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noted, subband samples tend to exhibit symmetric
distributions, fX ðxÞ; which are heavily skewed
toward x ¼ 0: In fact, the conditional PMF

fVp Qðpþ1Þj ðvp qðpþ1Þ
�� Þ typically exhibits the following

characteristics: (1) it is independent of the sign of

qðpþ1Þ; (2) fVp Qðpþ1Þj ð0 qðpþ1Þ
�� Þ > 1

2 for all q
ðpþ1Þ; and

(3) fVp Qðpþ1Þj ð0 qðpþ1Þ
�� ÞE1

2 for large 7q
ðpþ1Þ7:

As a result, it is desirable to condition the
coding of vp½ j  upon the value of vðpþ1Þ½ j  only
when vðpþ1Þ½ j  is small. We also find that it can be
useful to exploit redundancy between adjacent
sample magnitudes when vðpþ1Þ½ j  is small. These
observations serve to justify the assignment of one
of 3 coding contexts, kmag; as follows:

kmag j½  ¼

0 if v pþ1ð Þ j½  ¼ 1

and kh j½  þ kv j½  þ kd j½  ¼ 0;

1 if v pþ1ð Þ j½  ¼ 1

and kh j½  þ kv j½  þ kd j½  > 0;

2 if v pþ1ð Þ j½  > 1:

8>>>>>>><
>>>>>>>:

ð2Þ

4. Fractional bit-plane scan

In this section, we specify the order in which
samples are visited when a given bit-plane is
scanned. As discussed in Section 3.2, this order is
data dependent, and is aimed at improving the
embedding of the code-stream. This goal is
achieved through multiple coding passes. For each
bit-plane, p; the coding proceeds in a number of
distinct passes, which we identify as ‘‘fractional
bit-planes’’: P

p
1; P

p
2 and P

p
3: Each coding pass

involves a scan through the code-block samples in
stripes of height 4, as shown in Fig. 6. This scan
has been chosen to facilitate efficient software and
hardware implementations of the standard [6].
Some of the advantages of a stripe-based scan will
become apparent in Section 6 (the reader is
referred to [6] for a more detailed discussion).
Information for bit-plane p is coded for each
sample in only one of the passes; that sample is
skipped in the other two passes. Fractional bit-
planes are treated as indivisible units, and thus
determine the candidate truncation points for the

code-stream. Membership of each of the three
coding passes is determined dynamically, based
upon the significance state of each sample’s eight
immediate neighbours. These are the same neigh-
bours which are used to determine the conditional
coding contexts described in Section 3.3.

4.1. Significance propagation pass

The first coding pass in each bit-plane, P
p
1;

includes any sample location, j ; which is itself
insignificant, but has a significant neighbourhood;
that is, at least one of its eight neighbours is
significant. Membership inP

p
1 may be expressed by

the conditions s½ j  ¼ 0 and kh½ j  þ kv½ j  þ kd j½ 
> 0: These conditions are designed to include those
samples which are most likely to become signifi-
cant in bit-plane p: Moreover, for a broad class of
probability models, including those typically used
in image compression, the samples in this coding
pass are likely to yield the largest decrease in
distortion relative to the increase in code length
[8,9].
Each sample in the pass is coded using

the significance coding primitive described in
Section 3.3.1. The sign coding primitive is invoked
immediately after any significance coding step in
which the sample becomes significant; i.e., vp½ j 
¼ 1: It is worth noting that samples which become
significant in this pass may give rise to waves of
significance determination events which propagate
along connected image features such as edges. This
is because membership of the coding pass is
assessed incrementally. Once a sample becomes
significant, the four neighbours which have not yet
been visited in the scan then also have significant
neighbourhoods, and will be included in P

p
1 unless

they are already significant. We call this the
‘‘significance propagation pass’’ to remind the
reader that its members are assessed dynamically.
Fig. 6 provides an example of the significance

propagation pass for one stripe of the code-block.
In the figure, empty circles identify samples which
are insignificant in bit-plane p; shaded circles
identify samples which become significant during
the pass, P

p
1; and solid dots indicate samples which

were already significant in bit-plane pþ 1: Crosses
are used to mark those samples which do not
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belong to the significance propagation pass, either
because they were already significant, or because
their neighbourhood is entirely insignificant at the
point in the scan when they are visited.

4.2. Magnitude refinement pass

In the second pass of each bit-plane, P
p
2; the

magnitude refinement primitive of Section 3.3.4 is
used to code magnitude bit vp½ j  of any sample
which was already significant in the previous bit-
plane; i.e., sðpþ1Þ½ j  ¼ 1: Equivalently, Pp2 includes
any sample whose significance state is s½ j  ¼ 1;
which was not already included in P

p
1:

4.3. Cleanup pass

The final coding pass, P
p
3; includes all samples

for which information has not already been coded
in bit-plane p: From the definitions of P

p
1 and P

p
2;

we see that samples coded in this pass must be
insignificant. The significance coding primitives
described in Sections 3.3.1 and 3.3.2 are used to
code vp½ j  for all samples belonging to this pass.
We note that the conditions for run mode may
occur only in this coding pass. As explained in
Section 3.3.2, run mode is entered if an entire
stripe column contains insignificant samples with
entirely insignificant neighbours. The significance
of all of these samples is coded in P

p
3; using the run

mode to identify the first if any of the samples
which becomes significant in bit-plane p: Coding of
any remaining samples in the stripe column
proceeds in normal mode. As always, the sign
coding primitive is invoked for any sample which
becomes significant, immediately after its signifi-
cance is coded.

4.4. Rate-distortion properties

As already mentioned, the available truncation
points for the embedded bit-stream correspond to
the coding pass end-points. Thus, the number of
non-zero truncation points for code-block Bi is

Zi ¼ 3Ki � 2;

where Ki is the number of magnitude bit-planes
specified for code-block Bi (recall that the number

of bit-planes is explicitly signalled for each code-
block).
For each truncation point, zAf1; 2; y; Zig; the

length, L
ðzÞ
i ; identifies the smallest prefix of the

embedded bit-stream which is sufficient to cor-
rectly decode all symbols up to the end of coding
pass P

p
k; 0ppoKi; where p; k and z are related

through

z ¼ 3 Ki � pð Þ þ k� 5:

The first available truncation point, z ¼ 0; always
corresponds to discarding the entire bit-stream so
that L

ð0Þ
i ¼ 0:

As mentioned in Section 2, the rate-distortion
properties of the overall compressed image repre-
sentation depend upon the selection of appropriate
truncation points for each code-block. In parti-
cular, given any s > 0; any set of truncation points,
{zi}, which minimizes the functional,X
i

D
zið Þ
i þ s

X
i

L
zið Þ
i ;

is optimal in the sense that it is not possible to
further reduce the distortion without increasing
the overall bit-rate. The value of s is selected so
that the solution which minimizes this functional
achieves the desired overall bit-rate or distortion.
Thus, for any given s; each zi must minimize

D
zið Þ
i þ sL zið Þ

i : Let Hi be the set of all truncation
points for code-block Bi; which are solutions to
this optimization problem for some value of the
parameter s: That is,

Hi ¼
[
s>0

z D
zð Þ
i þ sL zð Þ

i pD
z0ð Þ
i þ sL

z0ð Þ
i

��� ; 8z0
n o

:

As argued in [17] and explicitly shown in [18], Hi

describes the vertices of the lower convex hull of
the set of distortion-rate pairs, (D

ðzÞ
i ; LðzÞ

i ). This is
illustrated in Fig. 7. Points in the interior of
the convex hull will never be selected by an
optimal assignment algorithm (i.e., a PCRD-opt
algorithm).
One way to assess the suitability of a particular

set of definitions for the fractional bit-plane coding
passes, is to measure the frequency with which
each of the truncation points, z; belongs toHi: At
one extreme, we might find that Hi consists only
of the bit-plane end-points (i.e., those truncation
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points corresponding to the end of each cleanup
pass, P

p
3). This would mean that de-interleaving

the code-block samples into fractional bit-planes is
useless. At the other extreme, we might find that
every truncation point belongs to Hi; meaning
that every coding pass has a beneficial impact on
the rate–distortion performance of the overall
compression system.
In practice, neither of these extremes is ob-

served. The convex hull occupancy (i.e., Hi

occupancy) results shown in Fig. 8 suggest that
each of the three types of coding pass is frequently
beneficial. These results are obtained by applying
the JPEG 2000 algorithm to the three large ISO/
IEC photographic test images, ‘‘Bike’’, ‘‘Cafe’’ and
‘‘Woman’’, using a block size of 64� 64. Experi-
ments are run for various quantization step sizes,
so as to cover the most interesting range of overall
image bit-rates (measured in bits/sample). Notice
that the bit-plane end-points (equivalently, the
cleanup pass end-points) do indeed contribute
most frequently to Hi: The other two coding
passes also contribute to the convex hull more
often than not.
While the significance propagation pass should

clearly precede the others, by virtue of its steeper
distorion-length slope (change in distortion, di-
vided by change in length), the situation is a priori
less clear with respect to the order of the other two
passes. The results in Fig. 8, however, also provide

justification for the fact that the magnitude
refinement pass is best performed before the
cleanup pass in JPEG 2000. To see this, we
observe that the distortion-length slope over
coding pass P

p
2 is most often steeper than that

over P
p
3: This is a necessary condition for the end-

point of P
p
2 to contribute to Hi; which occurs

much more often than not (see Fig. 8). If the order
of the magnitude refinement and cleanup passes
were reversed, P

p
3 would most often have a steeper

distortion-length slope than P
p
2; preventing the

latter from contributing frequently to Hi and
thereby weakening the embedding. This argument
relies upon the assumption that the distortion-
length slopes associated with magnitude refine-
ment and cleanup coding operations are not
affected by their order, which is largely the case.4

4.5. Other variations

The idea of sequencing bit-plane coding steps in
accordance with their anticipated distortion-length
slopes was conceived independently by Li and Lei

30

40

50

60

70

80

90

5.0 0.1 5.1 0.2 5.2
mean bit-rate (bps)

pe
rc

en
t o

n 
co

nv
ex

 h
ul

l

significance propagation

magnitude refinement

cleanup

Fig. 8. Convex hull occupancy rates for each of the three types

of fractional bit-plane coding passes.
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Fig. 7. Convex hull of the distortion–rate pairs, (D
ðzÞ
i ; LðzÞ

i ), for

code-block Bi: Solid dots identify the candidate points,Hi; for
optimal truncation.

4The magnitude refinement coding context, kmag; does have
some dependence upon the significance of the sample’s

neighbours and hence the order in which the refinement and

cleanup passes are performed. It turns out, however, that this

effect is usually quite small. In any event, the effect tends to

strengthen the present argument, since delaying the magnitude

refinement pass ensures that more information is available for

coding, so that its distortion-rate slope can be even steeper.
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[5] and Ordentlich et al. [8]. It could be argued that
the lists maintained by the SPIHT [12] algorithm
serve a similar purpose, representing one of its
most significant innovations over Shapiro’s EZW
algorithm [14]. Also, Li et al. [4] proposed a
reordering of EZW’s coding steps in accordance
with their anticipated distortion-length slopes.
Li and Lei [5] proposed a more complex

algorithm, in which the coding passes are not
confined to bit-plane boundaries. The distortion-
length slope is explicitly estimated for each
neighbourhood context configuration, based on
distortion models and probability estimates avail-
able from the adaptive arithmetic coder. Each
coding pass incorporates those coefficient bits
which have not previously been coded and whose
distortion-length slope is estimated to be at least as
steep as some threshold. The passes are thus
implicitly defined by the sequence of thresholds. If
the thresholds are close together, each coding pass
represents coefficient bits which are expected to
yield similar distortion-length slopes. In this way,
it can happen that some particularly favourable
samples are much more finely quantized than
others at any given point in the embedding.
Ordentlich et al. [8] explored fractional bit-plane

coding passes which eventually evolved into the
scheme used in JPEG 2000, in the context of a
simple bit-plane coding scheme involving Golomb
encoded run lengths. They defined coding passes
whose membership is based on information avail-
able from previous bit-planes only. A fourth pass
also included information from other subbands.
The ideas in [8] were combined with conditional
arithmetic coding of the bit-planes by Sheng et al.
[15].
The above works were based on the coding of

subbands as a whole. Independent code-blocks
and incremental assessment of membership in the
‘‘significance propagation’’ pass were introduced
by Taubman in [17]. That work also investigated
other fractional bit-plane assignment rules. A four
pass model incorporating a novel backward
scanning pass was found to yield superior embed-
ding to the three pass approach defined above for
JPEG 2000. Not only are there more truncation
points, but these truncation points also contribute
to the convex hull with greater frequency than that

observed in Fig. 8. In most cases, however, the
four pass model was found to offer negligible
improvement over the simpler three pass approach
described above. A careful study of this and other
refinements leading to the final form of the JPEG
2000 algorithm may be found in [6].

5. Compression performance

In this section we provide some indication of the
performance of the JPEG 2000 coder by compar-
ing it with the SPIHT algorithm [12], which has
become a popular benchmark for image compres-
sion. A 5 level DWT with the Cohen–Daubechies–
Feauveau 9/7 biorthogonal wavelet kernels [1] is
used for these experiments. Since both algorithms
employ exactly the same wavelet transform and
exactly the same quantization strategy, PSNR5

results serve as a meaningful indication of coding
efficiency.
The PSNR results reported in Table 1 are

obtained using the JPEG 2000 Verification Model
(VM8.0) and the public domain implementations
of SPIHT, both with and without arithmetic
coding, which are available from ‘‘www.rpi.edu’’.
The experiments are performed with distortion
progressive representations of each image. In the
JPEG 2000 case, a single pack-stream is generated,
having a quality progressive order. This single
pack-stream is truncated to each of the indicated
test bit-rates and decompressed. In addition to
distortion scalability, the JPEG 2000 pack-stream
is also resolution-scalable and supports a degree of
spatial random access. Moreover, it may be
reordered to support spatially progressive organi-
zations, for applications which cannot afford to
keep the entire compressed representation in
memory. The SPIHT bit-stream supports none of
these additional features.
The first set of results reported in the table

identifies average performance over the three most
popular natural images from the JPEG 2000 test
set, ‘‘Bike’’, ‘‘Cafe’’ and ‘‘Woman’’, each of size
2560� 2048. The other results correspond to the

5For 8-bit images, PSNR (measured in dB) is defined as

10 log10(255
2/MSE).
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2347� 1688 JPEG 2000 test image, ‘‘Chart’’, and
the more widely known 512� 512 images,
‘‘Lenna’’ and ‘‘Barbara’’. We have selected this
small set of test images primarily to emphasize key
features of the coder. More comprehensive experi-
mental results may be found in [13].
Evidently, the JPEG 2000 coder exhibits some-

what higher compression efficiency, while offering
substantially more flexibility than SPIHT. We
draw the reader’s attention to the fact that the
compression performance of JPEG 2000 is more
robust to variations in image content than that of
SPIHT (especially the version without arithmetic
coding), as evidenced by the image ‘‘chart’’. This
robustness follows from imposing fewer assump-
tions a priori on the structure of the wavelet
coefficients being coded.

6. Complexity considerations

Our purpose in this section is to suggest that the
JPEG 2000 coder is able to meet the demands of
high performance applications. We begin with a
brief discussion of the MQ arithmetic coder.
Contrary to popular belief, arithmetic coding need
not be a highly complex operation. We then
provide evidence from our experience in working

with software implementations of the standard.
Finally, Sections 6.3 and 6.4 provide some useful
statistics which may be used to predict throughout
and buffering requirements for hardware imple-
mentations of the standard.

6.1. The MQ coder

The binary-valued symbols produced by the bit-
plane coding primitives discussed in Section 3.3 are
coded using the MQ coder. The MQ coder is a
multiplier-free adaptive, binary arithmetic coder
with renormalization-driven probability estima-
tion. It includes the multiplier-free approximation
and bitstuffing policies introduced by the Q-coder
[11], enhanced by conditional exchange and
Bayesian learning in the probability estimation
state machine.6

At any given point in the coding process, the
string of symbols which have been seen so far is
mapped to a unique sub-interval, ½c; cþ aÞD½0; 1Þ;
represented by

c ¼ C � 2�16�N and a ¼ A � 2�16�N ; ð3Þ

Table 1

PSNR (dB) obtained by decompressing a single file, truncated to different bit-rates. SPIHT results are quoted relative to the PSNR

observed with JPEG 2000

Category 0.125 bps 0.25 bps 0.5 bps 1.0 bps

Natural (2560� 2048) JPEG 2000 24.83 27.58 31.32 36.19

SPIHT-AC �0.20 0.21 �0.29 �0.27
SPIHT-NC �0.67 �0.77 �0.94 �0.99

Chart (2347� 1688) JPEG 2000 28.80 32.50 37.48 43.74

SPIHT-AC �1.15 �1.29 �1.23 �1.18
SPIHT-NC �6.64 �4.82 �4.34 �3.73

Lenna (512� 512) JPEG 2000 31.04 34.14 37.30 40.40

SPIHT-AC +0.07 �0.00 �0.05 +0.06

SPIHT-NC �0.31 �0.42 �0.43 �0.37

Barbara (512� 512) JPEG 2000 25.43 28.40 32.22 37.16

SPIHT-AC �0.57 �0.82 �0.82 �0.74
SPIHT-NC �0.97 �1.18 �1.28 �1.22

6These enhancements were introduced with the QM-coder,

adopted by the JBIG and JPEG standards; probability

estimation in the MQ-coder proceeds according to the state

transition table known as JPEG-FA in [10].
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where C and A are integers and N is the number of
normalization shifts which have been employed to
ensure that 215pAo216: Upon completion, the
compressed bit-stream is the most significant EN
bits of C; encoder and decoder termination
policies establish the actual number of MSBs
which must be retained from C: This type of
representation is common to virtually all realiza-
tions of the arithmetic coding principle.
Each coding context, k; is represented by 7 bits

of state information. One bit holds the identity, sk;
of the MPS (most probable symbol) for context k:
The remaining 6 bits identify the state, Sk; of a
machine, which estimates the least probable
symbol (LPS) probability for context k; the
machine has 47 different states. Since the JPEG
2000 coder uses only 18 contexts, and each
requires a 7-bit representation, a high performance
hardware implementation may choose to maintain
the context states in high speed registers.
Suppose the next symbol, x; occurs in context k;

for which the LPS is currently estimated to occur
with probability pSkAð0; 1=2Þ: Ideally, the interval
length shrinks according to a’apSk if x ¼ 1� sk
(the LPS) and a’a� apSk ; if x ¼ sk (the MPS).
These are approximated by A’ %pSk ; and A’A�
%pSk ; respectively, where %pSk is an integer approx-
imation to pSka2

16 and aE0:71 is an empirically
observed mean of 2�16 A: The LPS is mapped to
the lower sub-interval so that C is unchanged;
when an MPS occurs, we map C’C þ %pSk :
If this process leaves Ao215 a renormalization

operation is applied to restore A to its legal range.
During renormalization, both A and C are multi-
plied by 2 (i.e. left-shifted), incrementing N to
preserve the validity of Eq. (3), until A is restored
to the range 215pAo216: The state variables, sk
and Sk are updated only when a symbol which is
coded in context K generates a renormalization
event (Ao215).
Since renormalization adds at least one bit to

the length of the arithmetic codeword (i.e., N)
significant compression means that renormaliza-
tion occurs rarely. Indeed, the majority of symbols
are coded as MPSs and do not induce renorma-
lization. For these symbols, the MQ coder per-
forms only three simple steps: (i) A’A� %pSk ;
(ii) C’C þ %pSk ; and (iii) a single bit test for the

renormalization condition, Ao215: The more
expensive operations occur only during renorma-
lization; these include state transitions in the
adaptive probability estimator, the renormaliza-
tion shifts themselves, and the assembly of
completed code-bytes.
In dedicated hardware implementations, it is

even possible to achieve throughputs in excess of
one symbol per clock cycle, by encoding or
decoding consecutive symbols concurrently. This
is possible so long as the concurrently coded
symbols are not separated by a renormalization
event. This possibility is described in [10, Chapter
13.7] as a ‘‘speedup mode’’ for the QM-coder
defined by the JPEG standard. It is discussed
further in [19]. Notice that the speedup mode has a
similar goal as the run mode described in Section
3.3.2. However, while the run mode affects the bit-
stream (and is thus mandatory), the speedup mode
is a matter of implementation.
The normalization policy described above en-

sures that A may be represented using a 16-bit
unsigned integer. At any point in the coding
process, however, C has a 16þN bit representa-
tion. Since C represents the lower bound of an
interval whose length is represented by Ao216; the
value C0 represented by these same 16þN bit
positions at any subsequent point in the coding
process must satisfy CpC0oC þ 216: All arith-
metic operations take place in the 16 LSBs of C;
but we are prevented from immediately dispatch-
ing the more significant bits of C to an output
buffer by the possibility that a carry bit generated
by the arithmetic might propagate into these bits.
The QM-coder used by the JPEG and JBIG

standards [10] stacks consecutive FFh bytes from
the more significant bits of C indefinitely, until
carries can be resolved. The MQ-coder, however,
follows the Q-coder [11] in adopting a ‘‘bit-
stuffing’’ approach, which allows code bytes to
be dispatched in a more regular manner with lower
implementation cost. Bytes are dispatched through
a single byte buffer; whenever this buffer assumes
the value FFh, an extra bit is inserted into the
representation of C so as to ensure that the effect
of future coding steps may not propagate beyond
the single byte stored in this buffer. Bit-stuffing
adds approximately 0.05% to the code length, but
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has the desirable effect of bounding the number of
operations which must be performed during
renormalization.
The specific realization of bit-stuffing in the

MQ-coder has the property that any consecutive
pair of bytes dispatched to the compressed bit-
stream is guaranteed to lie in the range 0000h
through FF8Fh. JPEG 2000 exploits this prop-
erty by defining unique marker codes in the range
FF90h through FFFFh, which may be used to
enhance error resilience and facilitate parsing and
reorganization of the code-stream. The reader is
referred to [2,18] for further details regarding error
resilience, the MQ coder and associated imple-
mentation techniques.

6.2. Software experience

Table 2 provides timing figures for software
implementations of the SPIHT and JPEG 2000
algorithms. The conditions and implementations
used to obtain these results are identical to those
used to obtain the PSNR results in Table 1. The
image category identified as ‘‘popular’’ refers to
the popular test images, Lenna and Barbara. Only
the decoding process is considered (not including
the DWT). This is due, in part, to the fact that the
encoding time for JPEG 2000 depends upon the
policy used to determine the number of bit-planes
which should actually be encoded for each code-
block. Ideally, one would estimate this quantity
with sufficient accuracy to avoid discarding most

of the encoded data during PCRD optimization,
when the optimal set of code-block truncation
points is determined. Our motivation for not
including DWT execution times in the results
reported in Table 2 is that both SPIHT and JPEG
2000 are employing exactly the same transform
here. It is worth noting that the execution time
required for block encoding or decoding tends to
dominate that associated with a carefully opti-
mized implementation of the DWT, except at very
low bit-rates.
SPIHT has the advantage that the encoding

process may be terminated as soon as the desired
bit-rate has been achieved. The price paid for this,
however, is that the encoding and decoding
processes require non-local access to the image
transform coefficients. This, in turn, causes a
dramatic reduction in throughput as the image
dimensions grow, since the machine spends most
of its time performing non-local memory accesses.
Table 2 clearly demonstrates this sensitivity to
image size. Interestingly, the throughput of the
JPEG 2000 algorithm is competitive with the
uncoded version of SPIHT, even when working
with small images.

6.3. Hardware implementation

The JPEG 2000 block coder has been designed
with hardware implementation in mind. As part of
the process which led to the selection and re-
finement of this algorithm by the JPEG committee,

Table 2

CPU time (ms/pel) obtained by decompressing a single file, truncated to different bit-rates, using a 400MHz Pentium II processor

Category 0.125 bps 0.25 bps 0.5 bps 1.0 bps

Natural (2560� 2048) JPEG 2000 0.041 ms 0.081 ms 0.157 ms 0.301 ms
SPIHT-AC 0.363 ms 1.29 ms 3.60 ms 8.62 ms
SPIHT-NC 0.292 ms 0.928 ms 2.84 ms 8.63 ms

Chart (2347� 1688) JPEG 2000 0.053 ms 0.081 ms 0.153 ms 0.301 ms
SPIHT-AC 0.293 ms 0.974 ms 2.84 ms 5.94 ms
SPIHT-NC 0.033 ms 0.308 ms 1.20 ms 5.64 ms

Popular (512� 512) JPEG 2000 0.043 ms 0.067 ms 0.154 ms 0.290 ms
SPIHT-AC 0.084 ms 0.114 ms 0.336 ms 0.728 ms
SPIHT-NC 0.044 ms 0.054 ms 0.112 ms 0.338 ms
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some of the expected properties of such an
implementation were investigated. Some discus-
sion of these matters may be found in [6,16]. In this
section, we outline one possible high level archi-
tecture for the block coder, along with measured
statistics which may be used to predict some
aspects of its performance.
Fig. 9 provides a high level overview of a

possible implementation of the block coder, which
exploits the regular stripe oriented coding scan
shown in Fig. 6. Interestingly, there is no need to
buffer the samples of an entire code-block in
internal memory. Instead, we shall assume here
that the relevant quantized subband samples are
available in an external memory and that they are
already separated into bit-planes: a sign bit-plane
and K magnitude bitplanes. As discussed in
Section 6.4, such a memory organization leads
naturally to a scheme for controlling the external
memory bandwidth associated with intermediate
buffering of subband samples. The block coder
imports the sign bits and the most significant
magnitude bit-plane into an internal memory. It
then processes the most significant magnitude bits,
while loading the next most significant bit-plane,
and so forth.
All internal memories are organized into words

which represent a single stripe column. Each stripe
column contains 4 samples and JPEG 2000 limits
the number of stripe columns in any code-block to

at most 210. Thus, sign and magnitude bit-planes
require 1K� 4-bit memories. We consider an
implementation in which the magnitude bit-plane
memory is double buffered, as indicated in the
figure.
A separate internal memory maintains a set of

four binary state variables for each location in the
code-block. The significance state variable, s½ j ; is
central to the bit-plane coding operations de-
scribed in Section 3.3. The sign state variable, #w½ j ;
contains the sign bit of any sample which has
become significant. This is transferred from the
sign bit memory at the appropriate point during
the coding process. p½ j  is a coding pass member-
ship state variable. It holds 1 if location j has been
included in the significance propagation pass of
the current bit-plane. Finally, s’½ j  is a delayed
version of s½ j ; it is initialized to 0 and toggled to 1
after the first magnitude refinement operation for
sample location j : The value of s’½ j  tells us
whether or not vðpþ1Þ j½  > 1; when determining
the magnitude refinement context in accordance
with Eq. (2).
The contents of the state memory are initialized

to 0 and updated as the coding proceeds. In order
to determine coding pass membership and form
coding contexts for the locations in any given
stripe column, we must have access to state
variables within a 6� 3 window. This window
consists of three consecutive columns from the
current stripe, from the last row of the preceding
stripe and from the first row of the following
stripe. The window is managed by a type of shift
register, which reduces the number of internal
memory accesses. The structure of the shift register
should be clear from Fig. 9. As the coding
proceeds, the elements in this shift register which
represent state variables for the current stripe
column may be modified.
Although we discuss only the encoder here, a

decoder may be implemented in almost identical
fashion. In particular, the state variables assume
identical values in the encoder and decoder at each
coding step. To estimate the throughput of an
encoder or decoder implementation, we shall
assume that the MQ coder is able to process one
symbol per clock cycle. This is not an unreason-
able assumption, considering the simplicity of the

Fig. 9. Bit-plane oriented block coding architecture. Decoder is

similar with reversal of some data flows.
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coding steps described in Section 6.1. This suggests
that the average throughput is upper bounded by
1=Rsym samples per clock cycle, where Rsym is the
average number of binary events coded by the MQ
coder per image sample. We shall presently
consider factors which may prevent us from
achieving such a throughput.
Table 3 provides observed values for the symbol

rate, Rsym; taken over the three large photographic
test images, ‘‘Bike’’, ‘‘Cafe’’ and ‘Woman’’ (see
Section 5). These results are obtained using a
reversible 5

3 DWT so that lossless compression is
achieved when the code-block bit-streams are not
truncated. Strictly speaking, the non-lossless re-
sults are directly applicable only for decoding,
since the encoder must generally process more
coding passes than are usually included in the final
bit-stream. These results suggest a maximum
average throughput for lossless encoding or
decoding of 1

5:8 samples per clock cycle.
To achieve this maximum throughput, the MQ

coder must be kept continuously active. In
particular, clock cycles cannot be wasted in
processing sample locations which do not belong
to the current coding pass. For example, if each
sample location of each stripe column required a
single clock cycle per coding pass, the average
throughput would be limited to 1=Zavg samples per
clock cycle, where Zavg is the average number of
coding passes per code-block. The observed sta-
tistics reported in Table 3 suggest that in such an
implementation approximately 75% of the clock
cycles would be wasted. The run mode described in
Section 3.3.2 also commonly dispatches an entire
stripe column with a single symbol.
A more efficient implementation is possible,

e.g., by performing multiple tests concurrently to

identify the next member location within a single
stripe column. In this case, each clock cycle would
process the next unprocessed sample location
which actually belongs to the current coding pass,
so long as the stripe column contains such a
location. A clock cycle need only be wasted when a
stripe column is ‘‘empty’’, meaning that none of its
sample locations belong to the current coding
pass. The last column in Table 3 provides observed
statistics for the average number of empty stripe
columns, Rempty, expressed as a fraction of the
number of image samples. An enhanced imple-
mentation of the form described above should be
able to achieve an average throughput of
1=ðRsym þ RemptyÞ samples per clock cycle. Thus,
for truly lossless compression or decompression,
an average throughput of 18 samples/clock appears
to be quite realistic, while much higher through-
puts can be achieved at lower bit-rates. A
reduction of Rempty by processing multiple stripe
columns together would cause an increase in the
peak access bandwidths that internal memories
would need to support.
It is instructive to consider the importance of the

stripe oriented scanning pattern in Fig. 6 to the
block coding architecture outlined above. In
general, larger stripe heights allow for reduced
internal memory access bandwidth. This is because
access to the rows above and below each stripe
(for context formation) may be amortized over a
larger stripe height. On the other hand, larger
stripe heights also imply larger registers and
more complex coding logic. The JPEG committee
adopted stripes of height 4 as a compromise
between these extremes. This particular stripe
height also has subtle advantages for at least
some efficient software implementations, such as
that used by the JPEG 2000 verification model
software. For a detailed discussion of these issues,
as well as a number of interesting enhancements to
the hardware architecture suggested above, the
reader is referred to [18].

6.4. Buffering resources

The main elements in an implementation of the
JPEG 2000 standard are the DWT and block

Table 3

Useful statistics for estimating the throughput of block

encoding and decoding hard ware

Bit-rate Zavg Rsym Rempty

0.25 bps 2.5 0.50 0.33

0.5 bps 4.5 0.93 0.59

1.0 bps 7.3 1.66 0.94

2.0 bps 11.1 2.89 1.40

Lossless 18.4 5.77 2.24
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coder. Fig. 10 illustrates a possible interaction
between these elements and the application. The
compressor and decompressor have similar prop-
erties, with the data flows reversed. We assume
that the images involved are large enough to rule
out buffering of even a single line of image samples
in internal memory. Thus, we will consider
architectures in which the required internal mem-
ory size is independent of the image dimensions.
We also assume that the application supplies (or
consumes) image samples line by line.
Each DWT stage is essentially a type of filtering

operation and may be implemented incrementally
as image lines appear (or are consumed), using
well established hardware implementation techni-
ques. Successive DWT stages may be pipelined in
various ways so that there is never any need to
buffer the entire image or any comparable
quantity. For details and analyses of various
DWT implementation strategies, the reader is
referred to [6,18]. For our present purposes,
it is sufficient to make the following summary
observations.
In general, memory size may be traded for

memory bandwidth (between on-chip and external
memory) by adjusting the number of image sample
lines which are processed together. As an example,
it is possible to implement the DWT with the CDF
9/7 wavelet kernels using approximately 20–80
image lines of working memory. Assuming 8-bit
image samples, the upper end of this range allows
for external memory bandwidths as low as 2.4 byte
transactions per image sample, including the cost
of 2 bytes/sample associated with writing each

original image sample to memory and subse-
quently retrieving it.7

The memory and bandwidth figures quoted
above do not include the cost of buffering
quantized subband samples in memory prior to
coding (or buffering decoded quantization indices
in memory prior to the inverse DWT). In some
designs it might be possible to avoid such
intermediate buffering of quantized subband
samples. In the present discussion, however, we
shall assume that the system must support
the costs associated with such buffering and
we endeavour to provide useful estimates for the
average values of these costs.
The block coder architecture suggested in

Section 6.3 expects to read or write quantized
subband samples bit-plane by bit-plane. To make
this possible, the subband samples produced by
the DWT may be immediately quantized, as-
sembled on-chip into chunks (e.g., 64 samples at
a time) and then written out bit-plane by bit-plane
to external memory for later coding. This is
identified as ‘‘bit-plane resequencing’’ in Fig. 10.
A dual process may be used for decompression.
Bit-plane resequencing has a positive impact on

external memory bandwidth. Without such a
device, the buffering cost of a similar algorithm
is estimated in [16], based on the assumption that
each subband sample can be accurately repre-
sented with at most twice as many bits as the
original image samples. Noting that there are three
subbands in almost all DWT levels and the width
of subbands at level d is 2�d times the width of the
original image lines, the above assumption on the
precision of the subband samples implies a bound of

Scodert2J1
XN
d¼1

3 � 2�d ¼ 6J1 image lines

on the subband buffering memory size, where J1
is the code-block height. Assuming 2 bytes per
subband sample, the external memory bandwidth
associated with this buffering is 4 byte transac-
tions/sample. In a practical system, the buffer

Application

DWT

Block
Coder

Line buffers

Working memory

Bit-plane buffering

Quantization &
bit-plane resequencing

Block
Coder

Block
Coder

Fig. 10. Interaction between DWT and coding sub-systems in a

JPEG 2000 compressor. Decompressor is similar, with data

flow directions reversed.

7 In some cases, the application may be prepared to supply or

consume image samples in exactly the same order as that

required by the DWT implementation, in which case the 2 byte/

sample transaction cost might be eliminated.
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memory size might need to be increased (e.g.,
double buffering) to further decouple the DWT
and coding sub-systems.
Fortunately, much lower memory bandwidths

(and somewhat smaller buffer sizes) may be
realized by exploiting the fact that subband
samples are buffered bit-plane by bit-plane. The
bit-plane resequencer can determine the actual
number of bit-planes which must be buffered for
each chunk. In most chunks, most of the more
significant magnitude bit-planes are entirely zero
(insignificant) and need not be explicitly buffered.
Further advantages are available during decom-
pression, since many of the least significant bit-
planes may not be decoded, due to truncation of
the embedded block bit-streams.
Table 4 indicates the average number of bits per

subband sample (including significant magnitude
bits and the sign bits of non-zero chunks) which
must be written to and retrieved from an external
bit-plane buffer, assuming a chunk size of 64
samples. These results are obtained under the same
conditions as those in Tables 1 and 2. The table
also reports the corresponding average memory
bandwidth, Bcoder; expressed in byte transactions
per sample. Evidently, the average memory
bandwidth associated with bit-plane buffering
can be quite modest.

7. Mode variations

The JPEG 2000 standard allows for a number of
variations on the algorithm described thus far. The
mode variations are sufficiently minor that the
need to support all modes may not impose a
significant burden on decoder implementations.

7.1. Parallel execution of coding passes

The JPEG 2000 block coder lends itself to para-
llel implementation techniques at a ‘‘macroscopic’’

level, since any number of blocks may be encoded
or decoded concurrently. The standard also
defines modes which enable the parallel processing
of individual coding passes within a code-block.
Some of the relevant considerations are discussed
in [7].
The key steps which must be taken to enable

parallel implementation of the coding passes are:
(1) Terminate the MQ codeword at the end of

each coding pass.8

(2) Initialize the MQ coder and all 18 probability
models at the beginning of each coding pass.

Parallel coding pass implementations are greatly
facilitated by the addition of a third modification:
(3) Eliminate the dependence of coding steps

within any given stripe on the significance or
sign of samples in the next stripe.

We refer to this third modification as ‘‘stripe-
causal’’ coding. Stripe-causal coding affects con-
text formation only for samples in the last row of
a stripe column. The JPEG 2000 block coder
provides mode switches to achieve each of the
three modifications described above, either indivi-
dually or together. The cost of parallelism is
surprisingly low, as little as 0.1 dB on the average
(with the largest code-blocks).
In order to take advantage of the opportunities

for additional parallelism enabled by this mode, an
implementation may perform a number of coding
passes in parallel, for a number of code-blocks.
In the extreme case, an implementation might
perform all coding passes in parallel for each
and every code-block. It should be noted, how-
ever, that based on the statistics shown in Table 3,
most of the coding pass processors are likely to be
idle most of the time. Alternatively, a smaller

Table 4

Average buffered bits per subband sample and corresponding

buffer memory band-width, expressed transactions per sample

Bit rate 0.25 bps 0.5 bps 1.0 bps 2.0 bps Lossless

Bits/sample 0.79 1.43 2.46 3.79 5.99

Bcoder 0.20 0.36 0.61 0.95 1.50

8The reader may wonder why this is not required in the

sequential mode described hitherto, since the embedded bit-

stream may be truncated at the end of any coding pass. The

encoder actually records the length of a prefex of the embedded

bit stream, which is sufficient to decode all included coding

passes. The decoder is expected to append FFhs to the prefix

which it actually receives and the encoder typically exploits this

fact to determine a suitable (possibly minimal) prefix length.

In sequential mode, lengths are recorded for each quality

layer to which the block makes a non-empty contribution. In

the parallel mode, length information is recorded for every

coding pass. For a thorough discussion of these matters, the

reader is referred to [18].
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number of coding pass processors, say 8, might
be implemented. These processors might need
to be invoked multiple times in order to process
some code-blocks. The need to synchronize
parallel coding pass processors may be the cause
of ad-ditional idle clock cycles for any given
processor.
In addition to the opportunities for parallelism,

this mode variation enables the reduction of
buffering resources in cases where the application
supplies or consumes the image in a line-by-line
fashion, by decoupling the number of lines jointly
processed by the DWT from the block height.
Notice that the savings enabled by bit-plane
resequencing in Section 6.4 are based on the
statistics presented in Table 3. In systems with
limited buffering resources, a design may need to
assume a worst case scenario. In the parallel mode
described in this section, the coder can process and
discard a block-stripe, moving to the next code-
block and saving the state of the system (context
and MQ-coder states, as well as boundary condi-
tions for determining future contexts). The saved
state is then retrieved to be used for processing the
next stripe in the code-block, as soon as this stripe
is supplied by the transform.
In this way, there is no need to buffer entire

code-blocks of quantized subband samples in
external memory. In fact, by tightly coupling the
implementations of the block coder and DWT,
intermediate buffering of quantized subband
samples may be eliminated altogether [6]. More-
over, this may be achieved without imposing
unreasonable constraints on the number of lines
processed together by the DWT.9 Of course,
saving the coder state information itself imposes
a penalty in terms of memory size and memory
bandwidth. The possibility of eliminating inter-
mediate buffering of subband samples may be of
interest in applications where peak (rather than
average) memory bandwidth is an important
resource. While the parallel mode is not necessarily
advocated as an improvement on memory band-
width (unless the storage of coder states can be

done in internal memory), it clearly provides more
flexibility in managing the trade-offs between
memory size, memory bandwidth and internal
complexity.

7.2. Lazy coding

As one might expect, symbol probabilities tend
to be substantially less skewed in the less
significant bit-planes. As a result, little benefit is
generally derived from the use of arithmetic coding
in the significance propagation,P

p
1; and magnitude

refinement, P
p
2; coding passes for poK � 4: The

coder provides a mode for bypassing the MQ
coder altogether in these coding passes, which can
result in significant speedup for software imple-
mentations at very high bit-rates; it can also reduce
the complexity of a parallel coding pass imple-
mentation, as discussed above. For most natural
images, this mode appears to have negligible effect
on compression efficiency. On the other hand,
artificial imagery, including text, graphics and
compound documents tend to suffer more sig-
nificantly.

8. Summary

JPEG 2000 is an advanced image compression
standard which incorporates and emphasizes
many features not found in earlier compression
standards. Many of these features are imparted by
independent, embedded coding of individual
blocks of subband samples. In this paper, we have
described the embedded block coding algorithm,
its various advantages, indicative compression
performance and some of its implications for
implementation complexity.
There is no doubt that the JPEG 2000 standard

is substantially more complex than the baseline
sequential JPEG algorithm, both from a concep-
tual and an implementation standpoint. On the
other hand, efficient implementations of the
algorithm in hardware and software are not
beyond reach. JPEG 2000 combines state-of-the-
art compression performance, with a very rich set
of features, which will help to usher in a new
generation of imaging applications.

9 It is sufficient for the DWT to produce or consume subband

sample lines in multiples of 4, the stripe height.
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