Preface

This book is about filter banks and wavelets. Those are new ways to see and represent a signal.
They are alternatives to the Fourier transform, using short wavelets instead of long waves. We
will explain the advantages (and disadvantages!) of the new methods. The final decision will
depend on the application itself, the actual signal, and its bandwidth.

To design and understand wavelets we still use Fourier techniques — the connections be-
tween time and frequency. This idea remains at the center of signal processing. Wavelets are
“alternatives” rather than replacements. The classical transforms will survive very well. But
other ideas have come quickly forward, to be understood and applied.

In a word, the new transforms are much more local. An event stays connected to the time
when it occurs. Instead of transforming a pure “time description” into a pure “frequency de-
scription”, the new methods find a good compromise — a time-frequency description. This is
like a musical score, with specified frequencies at specified times. Remember that the Heisen-
berg uncertainty principle stands in the way of perfection! We lose accuracy in time when we
gain accuracy in frequency. The musician cannot and would not change frequencies instantly.
But our eyes and ears succeed to give location as well as frequency, and the new wavelet trans-
forms have the same purpose.

The extreme case is an instantaneous impulse, with all frequencies in equal amounts. Its
Fourier transform has constant magnitude over the whole spectrum. By contrast, a wavelet trans-
form will involve only a small fraction of the wavelets — those that overlap the impulse. Fig-
ure 0.1 shows a sum of two extreme cases — an impulse and a pure wave 2 cos wn. The Fourier
transform spreads the impulse while it concentrates the wave (at frequencies @ and —w of
e'“" + e~f@"), The wavelet transform in the third figure is large at the time of the impulse and
also large at the frequency of the wave.

Purpose of the Book

There are already good books on this subject. The ideas and applications are beautiful, and the
word has spread. The bibliography lists many of those books, which have special strengths. Our
purpose is different. We believe that a textbook is needed. Our text explains filter banks and
wavelets from the beginning —in several ways and at least two languages. The examples and
exercises come from our courses at M.1. T. and Wisconsin, which brought students from all over
engineering and science.

Whether you are working individually or in class, we hope this book clarifies the central
ideas. Implicit in that goal is the recognition that we cannot describe every filter and prove every
theorem. The book concentrates on the underpinning of the subject, which is now stable. There
isaspecial “glossary’” to organize and define the terms that are constantly used, some from signal
processing and others from mathematics. The central idea is a perfect reconstruction filter bank,
with properties and purposes selected from this list:
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Figure 0.1: Impulse plus sinusoid, in time and frequency and time-frequency (time-scale).

Properties: Orthogonality, symmetry, short length, good attenuation.

Purposes: Audio/video compression, echo cancellation, radar, image analysis, communi-
cations, medical imaging, . ...

Design and analysis techniques: Time domain, frequency domain, z-transform.

If the reader is willing, we would like to develop specific examples in this preface. Tradi-
tionally, the opening pages thank those who helped to create the book. Our debt to friends will
soon be very gratefully acknowledged. But first, we go directly to transforms.

Transforms

Start with the basic idea and its purpose. The transform of a signal (a vector) is a new repre-
sentation of that signal. The components x(0), x(1), x(2), x(3) of a four-dimensional signal are
replaced by four other numbers. Those numbers y(0), y(1), y(2), ¥(3) are combinations of the
x’s. Qur transforms are linear, so these are linear combinations — for example sums and differ-

ences:
Y@ x(0) +x(1) ¥2) x(2) + x(3)
y(h x(0) —x(1) ¥3) x(2) — x(3).
What is the purpose of the y’s? And can we get back to the x’s? The second question is easier
and we answer it first,
This transform can be inverted. If you add the equations for y(0) and ¥(1), you get 2x(0).

Subtracting those equations yields 2x(1). The inverse transform uses addition and subtraction
(like the original!), and then division by 2:

x(0) 0.5 3(0) + y(1)) x(2)
x(1) 0.5 (0) —y(1)) x(3)

0.5 (¥(2) +y(3))
0.56@) -y(3)).
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The y’s allow perfect reconstruction of the x’s, by the inverse transform. Looking ahead for a
brief moment, we divide transforms into three groups:

(a) Lossless (orthogonal) transforms (orthogonal and unitary matrices)
(b) Invertible (biorthogonal) transforms (invertible matrices)
(c) Lossy transforms (not invertible)

A lossless unitary transform is like a rotation. The transformed signal has the same length as
the original. This is true of the Fourier transform and all its real versions (DCT = discrete cosine
transform, DST = discrete sine transform, HT = Hartley transform). The same signal is measured
along new perpendicular axes.

For biorthogonal transforms, lengths and angles may change, The new axes are not nec-
essarily perpendicular, but no information is lost. Perfect reconstruction is still available. We
just invert, Orthogonal wavelets give orthogonal matrices and unitary transforms, biorthogo-
nal wavelets give invertible matrices and perfect reconstruction. These transforms don’t remove
any information {or any noise}, they just move it around — aiming to separate out the noise and
decorrelate the signal. The irreversible step is to destroy small components, as we do below in
“compression.” Then invertibility is lost.

Matrices will appear very early, and we make no apology. A matrix displays the details of
the transform. (The key texts in signal processing are amazingly empty of matrices. With the
importance of systems like MATLAB, this must change.} Qur book maintains a time-domain de-
scription by matrices, in parallel with the frequency-domain description by functions of @. When
the inputs x(n) and outputs y(n) are seen as vectors, the transform from x to y is executed by a
matrix:

¥(O) 1 1 0 0 x(0)
(U _ 1 -1 ¢ 0 x(1)
¥(2) - 0 0 1 1 x(2)
¥(3) 0 e 1 -1 x(3)

The sum x(0) +x(1) comes from the first row. The difference x(0) ~x(1) comes from the second
row. Readers may recognize this as the 2-point DFT, and now comes its inverse. The matrix that
recovers the x’s from the y's is changed only by the factor -12-:

x(0) 1 1 0 0 ¥y
x(1) I I B B y()
x(2) T 210 o 1 1 ¥»(2)
x(3) 0o 0 1 -1 y(3)

If you multiply these matrices, the result is the 4 x 4 identity matrix.

Smallnote 'When the first matrix is divided by ~/2, it becomes an orthogonal matrix. The rows
of length /T + 1 = +/2 will become unit vectors. The inner products between rows remain at
zero. The transform becomes unitary (lossless) when the perpendicular axes - the four rows —
are correctly normalized. The inverse is the transpose.

The length squared of the ransform is now

(x(O)jix(l))Z + (x(O)‘;;(l) )2 + (.1:(2);-_:;:_(3_)_)2 + (.t(2);;(3))2_

This simplifies to x(0)? +x(1)? +x(2)* +x(3)2. Thus |ly|I*> = (Ix/)? and the transform is unitary.
For real matrices we also use the word orthogonal.
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Purpose of the Transform

One important purpose is to see patterns in the y’s that are not so clear in the x’s. This means
that the computer should see the pattern. What it sees best is large versus small. The computer
will notice nothing special about the four numbers

xMW=12 x(D=10 x(2)=-10 x(3)=-1.2.

Your eye notices various things in Figure 0.2 (I hope). Maybe the small movement and then the
jump. Maybe the antisymmetry. To see this signal in the Y representation, compute sums and
differences:

YO =22 y1)=02 y2)=-22 y(3) =02

2.2
12 Transform

- 1.0 Original y(n)

signal x(n)
02 0.2
|

—-1.0 13

-2.2

Figure 0.2: The x's transform to the y's by sums and differences.

First point: y(1) and y(3) are much smaller than y(0) and ¥(2). The differences are an order of
magnitude smaller than the sums. Our transform has almost lined up the signal in the y(0)-y(2)
plane. Those two components of y do most of the work of four. It is true that we need all four
¥’s to reconstruct perfectly all four x’s. But if we change the small numbers ¥(1) and y(3) —just
cancel them! — the compressed signal y, is

Those numbers 0.2 were below our threshold. In the compressed ¥, they are gone. Figure 0.3
shows the signal x,. reconstructed from Y ~—the small difference between x(0) and x(1) is lost,
For comparison we compute the 4-point DFT, expecting and seeing the imaginary number

i=j=+-1:

¥(0) 1 1 1 1 1.2 0
E0) 2 N I D S G 10 { | 220144
E7¢3 1 R S D LA L L -1.0 |~ 0.4
¥(3) | I A LI £ —1.2 2.2(1 = 1)

That zero in ¥ reflects the antisymmetry. To see it in the sum-difference transform, we must go
to the next level,
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2.2
Compressed
¥e(n) L1 L1 Reconstructed
x:(n)
0 0 ,
—-1.1 -1.1
-2.2

Figure 0.3: y, and x. are close to y and x, when small becomes zero.

Multilevel Transforms by Recursion

A key idea for wavelets is the concept of “scale.” Sums and differences of neighbors are at the
finest scale. We move to a larger picture by taking sums and differences again. This is recur-
sion— the same transform at a new scale. [t leads to a multiresolution of the original signal
x(0), x(1), x(2), x(3). Averages and details will appear at different scales.

The wavelet formulation keeps the differences y(1) and y(3} at the finest level, and iterares
only on y(0) and y(2). Iteration means sum and difference of the transform:

20) =y(0)+y2)=0 and z(2) = y(0) —y(2) =44,

At this level there is extra compression. One component z(2) now does most of the work of the
original four. The wavelet transform z(0), y(1), z(2), y(3) is in Figure 0.4.

Haar Transform

Second Level 44 Compressed 44
o f24  102 o .01 to
20y (1) z(2) y3 2.0 yA1} z2A2) y.(3)

Figure 0.4: Z(0) and Z(2) are the sum and difference of y(0) and y(2). Compress to Z(2).

The key point is the multilevel construction, which is clear in a flow-graph:

sum z{(H
sums y(0), y(2) —l:
x { difference 2(2)

differences y(1), y(3)

This two-step wavelet transform is executed by a product of two matrices:

1 1 1 0 0 1111
i 1 -1 0 o] |1 -1 o o

1 -1 o o1 1|51 1 -1 -
1 0 0 1 -1 0o 0 1 -1
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That is invertible! To draw the flow-graph of the inverse, just reverse the arrows. 'To invert the
matrix on the right, multiply the inverses of the matrices on the left (in reverse order of course),

The wavelet transform becomes unitary as before, when we divide sums and differences by
/2. You will see this number appearing throughout the book, to compensate for scale changes,

Perhaps one more transform could be mentioned. It is the Walsh-Hadamard transform, which
iterates also on the differences y(1) and Y(3). Instead of the “logarithmic tree” for wavelets, we
have a complete binary tree for Walsh-Hadamard:

sumz(0) =0
—— sums y(0} and y(2)
difference z(2) = 4.4

sumz(1) = 0.4

— differences y(1), y(3)
difference z(3) = 0

This also counts as a wavelet packet (those include every binary tree). You would not want
to miss the “Hadamard matrix” for this transform, which is exceptional. All entries are 1 and
=1 and all rows are orthogonal:

1 1 11 111
i 1 1 -1 I R S T T
1 -1 1 I I S SRS R
1 -1 1 -1 1 -1 -1 ]

When divided twice by +/2 this matrix is orthogonal and also symmetric. The original x’s can
be reconstructed from the y’s or the w’s or the wavelet outputs y(1), y(3), z(0), z(2). From com-
pressed outputs we get approximate (but good) reconstruction.

Don’t forget the disadvantage compared to wavelets! All sixteen entries are nonzero. The
complete tree takes more computation than the wavelet tree, For signals of length n (a power of
two), the Hadamard matrix has n2 nonzeros and the wavelet matrix has only n+n log, n. Those
are the costs without recursion, jumping from the original x’s directly to the final z’s.

When the computations are recursive, as they always should be, we have a product of very
sparse matrices. The flow-graph gives 2n log, n for the complete Walsh-Hadamard transform
(exactly matching the Fast Fourier Transform). This is good but wavelets are slightly better,
The transform to z(0), y(1), z(2), ¥(3) computes the sum and difference of n — 1 pairs. This
needs only 2 — 2 calls to memory.

The wavelet transform achieves the Holy Grail of complexity theory (or simplicity theory).
The transform is an O (n) computation. But does it separate the true signal from noise? Does it
allow compression of 4:1 or 8:1 or 20:1? This sum-difference transform is analyzed further in
Chapter 1 —it is such a good example — but we admit here that it is too simple. Better filters
are needed, and they lead to better wavelets (still with O(n) operations). That is the subject of
our book,
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Applications

The choice of waves or wavelets, Fourier analysis or filter analysis, depends on the signal. It
must. Signals coming from different applications have different characteristics. It is helpful to
see a broad picture:

Audio: Use many subband filters or a windowed (short time) Fourier transform.
Speech: The time variation is irregular and requires nonuniform intervals,

Images: Finite length signals need special treatment to reduce blocking. Symmetric extension
goes with symmetric filters.

Video: Use motion prediction (optical flow of images) or space-time filtering.

The best choice for medical imaging is not clear. The legal Questions arising from lossy com-
pression are not clear either. Identification from synthetic aperture radar (SAR images) is an
enormous problem. So is de-noising, which is at the heart of signal representation. Ultimately
we are trying to choose a good basis,

The problem is to represent typical signals with a small number of conveniently computable
Junctions. The traditional bases (Fourier, Bessel, Legendre, ...) come from differential equa-
tions. Wavelets do not come from differentia equations! One reason is, those equations don’t
include dilation. A dilation equation ¢(t) = Y 2h(k)p (2 — k) involves two time scales. lis
solution ¢(¢) is nonzero only on a finite interval. Then ¢(21) is nonzero on half of that interval,
The basis is localized. It is quickly (and recursively) computed from the numbers k(). Those
are the coefficients in the corresponding lowpass filter,

This relation of filters to functions is the heart of the book,
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Guide to the Book

This book has a two-part subject. One part is discrete, the other is continuous. In discrete time
we develop the idea and applications of filter banks. In continuous time we have scaling func-
tions ¢(¢) and wavelets w(t). By a natural limiting process, iteration of the lowpass filter leads to
the scaling function. One highpass filter then produces a wavelet. Our goal is to make this con-
nection clear. We find the conditions on the discrete coefficients that lead to good filter banks
and good wavelets.

Historically and mathematically, the filters come first. Perfect reconstruction filter banks
were developed in the early 1980°s. The excitement around wavelets started [ater (and grew
quickly). This excitement was not universal — designers of filter banks naturally asked what
was new. Part of the answer is precisely in that process of ieration. For a filter to behave well
in practice, when it is combined with subsampling and repeated five times, it must have an extra
property — not built into earlier designs. This property expresses itself in the frequency domain
by a sufficient number of “zeros at 7. Then the frequency band can be successfully separated
into five octaves,

The underlying problem is to choose a good basis. We want to represent a signal well, by
a small number of basic signals. These can be sinusoids and they can be wavelets. On a dis-
crete grid, @ = ar is the highest frequency at which a signal can oscillate. Those oscillations
x(n) = €™ = (—1)" are stopped by the lowpass filter with a “zero at #”. The highpass fil-
ter lets fast oscillations through, and the synthesis filters can reconstruct the exact input. But
compression may come between analysis and synthesis. Frequencies that are barely represented
will be intentionally lost. That mostly means high frequencies but the filter bank is impartial —
it keeps the basis functions that are important to the specific signal. We want to show when,
and why, filter banks and wavelets are effective in reconstruction and signal representation and
compression,

Filter Banks

Some readers will begin this book with Chapter 1. Others will jump forward to a topic of partic-
ular interest. This brief guide is for both, especially to tell the first readers what is coming and
the second group where to look. We are pointing to places where preparation and explanation
come together, to design and study new structures.

For filter banks, that place is Section 4.1. There we identify the two conditions for perfect re-
construction (in the absence of lossy compression). One condition removes distortion, the other
condition removes aliasing. The anti-distortion condition applies to the products FolHg and F\ H,
along the channels of the filter bank. Then the anti-aliasing condition controls how those prod-
ucts can be separated into the four filters.

The design of a perfect reconstruction filter bank is a choice of FoHg and then a factorization.
To understand the conditions on distortion and aliasing, we apply the techniques of multirate
filtering. Those techniques are explained in Chapters 1-3, with examples throughout. Of course
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filters are to be defined! But we can go forward even now, to illustrate a filter bank that gives
perfect reconstruction.

The analysis bank is on the left. It has a lowpass filter Hy, and a highpass filter Hy, and dec-
imation by (] 2) — which removes the odd-numbered components after filtering. The analysis
bank yields two “half-length” outputs. Then the synthesis bank on the right begins with the up-
sampling operation (} 2) — which inserts zeros in those odd components:

_ Hy Hiz2F oo {12 Fy
input X output X
HI—“lZ—...—12—Fl
Two-channel filter bank: Separate the input into frequency bands (filter and downsampile).
Then reassemble (upsample and filter).

The gap in the center indicates where the subband signals are compressed or enhanced. The
applications of this structure are extremely widespread. We believe that any reader interested in
signal processing (and image processing) will find that filter bank analysis is extremely useful,

The filters Hy, H1, Fg, and F, are linear and time-invariant. The operators ({ 2) and (1 2) are
not time-invariant. These multirate operations are responsible for aliasing and for imaging —
they create undesirable and extraneous signals that the filters must cancel. To understand how
that happens, and to design good filters, we use the tools developed in Chapters 1-3: especially
transformation to the frequency domain and z-domain. We try to explain the analysis of multirate
filtering, with (} 2) and (} 2), clearly and memorably.

The theory and the design of filter banks and wavelets will dominate Chapters 4-6. This is
the heart of the book, The structure of an erthogonal bank is very special, and the next figure
shows how the filters are related. For length 4 all filters use the four coefficients a, b, ¢, d that
Daubechies derived:

a’b»c‘d B 12 [ T2 d,c,b,a
"‘“’{ x6-3)

d,~¢,b,—a [ 12 L wee < 124 -a,b,-¢,d

The form of an orthogonal filter bank with four coefficients.

How did she choose a, b, ¢, d 7 Part of the answer will have to wait, but here is the essential
idea. The product along the top channel gives a particular “halfband filter™:

@ b,e,d)x(d, e, b,a) =(-1,0,9, 16,9, 0, ~1)/16.
This convolution is a multiplication of two polynomials, when a, b, ¢, d are the coefficients:

@+bz ' Fez P +diHd+ez +b7 2 Faz ) =
(149272 +1627° + 927 = 275)/16.

The four coefficients are pleasant to calculate. The serious job in Chapter 4 is to explain what is
special about that 6™-degree polynomial in which z ! and 7> are missing.
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A filter bank also gives perfect reconstruction if it is iorthogonal, This design is less re-
stricted. The product FoHy must skip the same odd powers of z~!, but Fy does not have to be
the transpose (the flip) of Hy. Here are specific numbers for the filter coefficients — not the only
choice and maybe not the best. They show how the filters Fy and F on the synthesis side are
related to the analysis filters Hy and Hy (by alternating signs):

Hp Fy
~1262-1 42w 12 121
x(n)~|i :l— 16 x(n - 3)
L-2,1 L2 see (121, 2-6 21
Hy Fy

A biorthogonal filier bank: Perfect reconstruction with 3 delays.

For filters, we stop here. This time Fp(z) = 1 + 2271 + 772, Multiplied by Hy(z) it gives the
same important 6"-degree polynomial as before. To understand why the zero coefficients are
necessary in that polynomial, and why — and % are desirable, I am afraid that you have to
read the book!

Qur discussion went this far (further than we intended) so as to make a basic and encouraging
point: The construction of new filter banks need not be complicated. This subject is accessible
to new ideas and experiments,

Wavelets

Wavelets are localized waves. Instead of oscillating forever, they drop to zero. They come from
the iteration of filters (with rescaling). The link between discrete-time filters and continuous-
time wavelets is in the limit of a logarithmic filter tree:

_~ Scaling function §(t)

’/'

(42 Ho| <’

(42 Hy N
(42) Hy { 2 H, ™ Wavelet wi(t)
4D H, —

fi(t)

A H |—

Scaling function and wavelets from iteration of the lowpass filter.

Scaling functions and wavelets have remarkable properties. They inherit orthogonality, or
biorthogonality, from the filter bank. Because of the repeated rescaling that produces them,
wavelets decompose a signal into details at all scales. The wavelet w(r) and its shifts w(z —k) are
at unit scale. The wavelets w(2/¢) and w(2/7 — k) are at scale 27/, The biorthogonal functions
$(t) and w(r) come from iterating the synthesis bank.

Wavelets produce a natural multiresolution of every image, including the all-important
edges. Where the low frequency part of the Fourier transform is often a blur, the output from
the lowpass channel is a useful compression,
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Sections 5.5 and 6.2 study the particular wavelets created by Ingrid Daubechies. They are
orthogonal, with the advantages and limitations that this property brings. Sections 4.1 and 6.5
study biorthogonal alternatives, which come from different factorizations of the same polyno-
mizl (as above). This polynomial corresponds to a “maxflat halfband filter”, and we hope you
will like the connections.

More than that, we hope you enjoy the whole book. This subject is a beautiful combination of
mathematical analysis and signal processing applications. The analysis and the applications are
based on designs that give perfect reconstruction. To explain both sides of this subject, we need
words from mathematics and words from digital signal processing. The Glossary at the end is a
dictionary of their meanings. Above all we need ideas from both sides, and from a tremendous
range of application areas. It is to the understanding of filters and wavelets, and the growth of
successful applications, that this book is dedicated.

Summary of the Theory

There are four conditions that play a central part in this book. Because of their importance we
highlight them here. They apply directly to the coefficients in the filter banks — and the conse-
quences are felt (after iteration!) in the scaling functions and wavelets, Here are the four condi-
tions — some might say in decreasing order of importance:

PR Condition Perfect reconstruction.
The synthesis bank inverts the analysis bank, with £ delays.
Biorthogonal banks with no aliasing and no distortion.

Condition O  Orthogonaliry,
The analysis bank is inverted by its transpose.
The wavelets are orthogonal to all their dilates and translates.

Condition A, Accuracy of order p for approximation by scaling functions ¢(t — k).
p vanishing moments in the wavelets,
pth order decay of wavelet coefficients for smooth f(r).

Condition E Eigenvalue condition on the cascade algorithm.
Determines convergence to ¢ (¢) and smoothness of wavelets,
Equivalent to stability of the wavelet basis.

One step further and this Guide is ended. The four fundamental conditions will be stated
explicitly for a two-channel filter bank, with the sections in which they appear. We continue to
use the polynomials Ho(z), H,(z), Fo(2), and F((z), whose coefficients come directly from the
filters. By convention, these are polynomials in z~!, and the lowpass analysis filter is represented
by Ho(z) = h(0} + h(1)z7! + --- + B(N)z~". Here are the conditions that give filters and
wavelets with good properties:

1. Perfect Reconstruction (PR condition in Section 4.1)
FR(DHo(D) + F(H1(2) =227 and Fy(DHy(~2) + Fi(z) Hy(=2) = 0.

The second equation gives the anti-aliasing choices Fo(z) = Hy(—z) and Fy(z) = — Hop(—2).

.
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2, Orthogonality (Condition O in Section 5.3)

The filter coefficients are reversed by Fo(z) = 2N Ho(z™") and Fy(2) = z=" H,(z™"). Then
perfect reconstruction depends on the “double-shift orthogonality” of the lowpass coefficients
hk):

Y h(k) Bk + 2n) = &(n).

In terms of the polynomials this is Hy(z) Ho(z™') + Ho(—2)Ho(—2"") = 2.

3. Accuracy of order p (Condition Ay in Sections 5.5 and 7.1)
The lowpass filter has a zero of order pat z = —1:

1+z7!
2

Hy(z) = g a(2).
(=)

4. Convergence and Stability (Condition E in Section 7.2)
The transition matrix T has A = 1 as simple eigenvalue and all other [A(T)]| < 1.

Final note: The sixth degree polynomial in the examples above has four zeros at z = —1:
—14+9272 41623 + 97 =2 S = (1 + 27 ) (—1 + 427 = 27D,

These zeros give flat responses near @ = 7 and also @ = 0. The absence of z7! and z~3 is the
key to perfect reconstruction. Polynomials of higher degree, also with zeros at z = —1 and also
with only one odd power, factor into Fo(z) Ho(z) to give the best filters for iteration. In the limit
of the iterations, these filters give good wavelets.



Filters and Matrices

h= (h(O), eo., (N )) Causal FIR lowpass filter (impulse response) with Y (k) = 1
H  Toeplitz matrix with k(k) on the kth diagonal: ~ H;; = h(i — j)

H) =Y hk) e~ (frequency response in reduced notation)
H(ei®y = Y h(k) e~k (signal processing notation)

H@) = Y h(k)z™*  Transfer function in the z-domain with z = ¢/*

y =Hx = h*x corresponds to Y (z) = H(z)X(z)  Convolution Rule

S Delay gives (Sh)(k) = h(k — 1)  Time Invariance is SH = HS

s-!  Advance gives (S"'h)(k) = h(k + 1)  Multiply transform by z = ¢™/¢

({2) Downsampling operator ({ 2)h = heyen = (h(O), h(2), h4), .. ) = even phase of h
(12)S7h = hoga = (r(1), h(3), k(5), ...) Odd phase of

Hp(2) = [Heven?) Howa()] = [ h(2K)z™* > h(2k + 1)z7¥]  Polyphase representation
(12) Upsampling operator (42)v = [v(0) 0 v(1) O v(2) 0 ---]has z-transform V (z2)
(12)(42)x = [x(0) 0 x(2) O x(4) 0] has z-transform 5[X (2) + X (=2)] = Xeven(2?)
H(z™")  Transpose filter with coefficients h(—k): anticausal matrix HT

NH(z"')  Flipto k(N — k) produces (k(N), ..., h(2), h(1), h(0))

H(—z) Alternating sign (—1)*h(k) produces (k(0), —k(1), h(2), —h(3), .. )
NH(-z"")  Alternating flip (—1)*h(N — k) produces (h(N), ... , (=DVhr(0))

h(k) = k(N —k)  Symmetric filter (W symmetry for odd N and H symmetry for even N)



Filter Banks

L=(2)C = ({2)v2H, Lowpass analysis channel: Filter and downsample

B = ({2)D = ({2)v2H, Highpass analysis channel: Filter has Y h (k) = 0

ﬁFO(T 2)  Lowpass synthesis channel: Upsample and filter with Fo(z) = H;(—z2)
V2F1(12) Highpass synthesis channel: Upsample and filter with Fj(z) = —Hy(—2z)
Fo(z)Ho(z) — Fo(—2)Hp(—2) = Po(z) — Py(—z) =2z~%  No distortion: £ delays (odd ¢)

Hyeven(z)  Hpodd(2) [ Foeven(z)  Fieven(2) ] Polyphase
H = g ' and F = ' ’ .
r@ [ Hieven@  Hy oaa(@) PO Foos@  Fioa(@ matrices

_ | Ho(z) Ho(-2) | F@ Fi(z) Modulation
H'"(Z)—[ Hi(z) Hi(-2) ] and Fm_[ Fo(=2) Fi(-2) ] matrices

Fy(2)Hp(z) =1  Perfect Reconstruction with no delays

)
Fn(2)H,(2) = [ 2Z0 _202_5 ] Perfect Reconstruction with £ delays (odd £)

H,f (z")Hp(z) =1 H,(2) is paraunitary and the filter bank is orthogonal
2 ho(m)ho(n + 2k) = 8(k) and Ho(z)Ho(z™') + Ho(—z)Ho(—z"") =2 Orthogonal lowpass

3 (=1)*k™ho(k) =0forO<m < p  Condition A, gives p zeros of Hy(e’*) atw = 7

List of Scaling Functions and Wavelets

Haar (box function and up-down square wave)

Daubechies (maxflat orthogonal with 2p filter coefficients)

Splines and biorthogonal wavelets (F(z) = (1 + z7!)? gives spline of degree p — 1)
Splines and semiorthogonal wavelets (perpendicular to splines, IIR duals)

Maxflat biorthogonal (F(z) H (z) is Daubechies maxflat product filter)

Binary biorthogonal (coefficients are integers times 27"; Section 6.5)

Shannon (ideal filter, sinc scaling function, box function in w)

Meyer (IR but smooth in w and ¢)

Coifman (zero moments H®(0) and [ t*¢(¢)dt = 0 for0 <k < p)

Morlet (e~i@'¢~"'12 with g = /2] In2)



Multiresolution and Wavelets

¢ (¢) from the dilation equation (refinement equation) ¢ (1) = 3" 2n(k)p (2t — k)

w(t) from the wavelet equation w(t) = S 2h(k)yp(2t — k)

wj(t) = 2/w(2/t —k):  Normalized wavelet on [kAz, (k + N)At]

Scale parameter j for stepsize At =27/ (At =2/ in [D] and MATLAB Toolbox)
Shift-invariant subspaces V; C Vi withV,; @ W; =V f) e Vo & f (27t) e V;
{¢(t —k)}  An orthonormal basis (or only a Riesz basis) for Vo

{w( —k)}  An orthonormal basis (or only a Riesz basis) for Wy

(2792t —k)} and  {2/7w(@t—k)} Bases for V; and W;. Joint basis for Vj;
Orthogonal multiresolution ~ Orthonormal bases with V; perpendicular to W;
Semiorthogonal multiresolution  Riesz bases with V; perpendicular to W;

Biorthogonal multiresolution ~ Biorthogonal bases with V; L VV,- and W; L Vj

#(¢) and W(¢) from the analysis filters ko and k; generate Vo Wo =V

¢ (1) and w(¢) from the synthesis filters f; and f; generate Vo @ Wo = V)

(#(t —k), Bt — &) = 6k —1) Biorthogonal (dual) bases for Vo and Vg

(w(t — k), W(t —¢£)) =8k —1) Biorthogonal (dual) bases for Wo and Wo

aje = (@), $,-k(t)) Coefficients in f;(t) = ), ajx¢;x(t) = projection of f () onto V;
bjx = (f(t), W(t)) Wavelet coefficients in f(t) = 33 bjcw;i(t)

ajr = Y ho(€ —2k) ajrr e and bjx = Y mi (£ —2k) aj1,e  Mallat Fast Wavelet Transform

aj1e =2 foll —2k) aj+ 2 fi(€ —2k) bjx  FastInverse Wavelet Transform



Dilation Equation — Solution and Smoothness

d) =H %) $(%) Fourier transform of the dilation equation

$(a)) = ‘;‘;1 H(3)  Fourier transform of the scaling function ¢ (¢)

V(@) =3 2n(k)p© (2t —k)  Cascade algorithm with ¢©@(¢) = box function

M= (]2)2H Cascade matrix with double-shifted rows: M = +/2L

m(0) and m(1) N by N submatrices of M  Entries 2h(2i — j) and 2h(2i — j + 1)
m(0)® =®  Eigenvector with A = 1 gives ® = (¢(0), #(1), ...) at the integers
P(tty ) =mt)® (128 --) Recursion for ®(t) = (p(¢), ¢z + 1), ...) at dyad
m(t1) m(tz) --- m(t)  All products uniformly bounded < Bounded recursion for ¢(¢)
T=(12)2HH"  Transition matrix from autocorrelation h * T corresponding to | H (w)[2
Ta=a Eigenvector of T gives the inner products a(k) = (¢(¢), ¢(t + k))

A() =Y a(k)z™* and A(®) = ¥ [$(@ + 27k)|>  Euler-Frobenius polynomial from h(k
A(w)=1landA(z)=1landa=§ Orthonormal basis {¢(z — k)}

O0<A<AW) <BandAY @’ < | X aot—k)|* < B Y a} & Riesz basis {¢(t — k)}

Condition E for Riesz bases {¢(t — k)} and {w,(¢)} and L? convergence of $©(¢) to ¢(¢):
A = 11is a simple eigenvalue of T and all other |A(T)| < 1

Special eigenvalues A = 1, ..., (})*'of MandA =1, ..., ($)%7! of T from p zeros
Smax = —:—gg—ﬁ Smoothness of ¢ () with p = |Amax(T)| excluding A = 1, %, en, (%)2p—1
Smax = P — %  Smoothness in L2 of spli f d -1 = (Lzyp

max = 3 plines of degree p — 1 from H (z) = (~5-)

Smax < p — % Bound on derivatives of ¢ () when the filter has p zeros at =



