Wavelets

and

Filter Banks

Gilbert Strang

Massachuserts Institute of Technology

Truong Nguyen

University of Wisconsin

N YYIISIYYIISIIIT
= e A

i A

#:fi ==

Wellesley-Cambridge Press
Box 812060
Wellesley MA 02181

Chapter 5 Orthogonal Filter Banks

5.1
5.2
5.3
5.4
5.5

Paraunitary Matrices 144
Orthonormal Filter Banks 147
Halfband Filters 153

Spectral Factorization 157
Maxflat (Daubechies) Filters 164

Chapter 6 Maultiresolution

6.1
6.2
6.3
6.4
6.5

The |dea of Multiresolution 174

Wavelets from Filters 186

Computing the Scaling Function by Recursion 193
Infinite Product Formula 201

Biorthogonal Wavelets 208

Chapter7 Wavelet Theory

7.1
7.2
7.3
7.4
7.5

Accuracy of Approximation 221

The Cascade Algorithm for the Dilation Equation 234
Smoothness of Scaling Functions and Wavelets 242
Splines and Semiorthogonal Wavelets 250
Multifilters and Multiwavelets 259

Chapter 8 Finite Length Signals

8.1
8.2
8.3
8.4
8.5

Circular Convolution and the DFT 263
Symmetric Extension for Symmetric Filters 272
Cosine Bases and the DCT 276

Smooth Local Cosine Bases 282

Boundary Filters and Wavelets 289

Chapter9 M-Channel Filter Banks

9.1
9.2
9.3
9.4
9.5

Freedom versus Structure 299

Polyphase Form: M Channels 304

Perfect Reconstruction, Linear Phase, Orthogonality
Cosine-modulated Filter Banks 325
Multidimensional Filters and Wavelets 331

316

Chapter 10 Design Methods

10.1 Distortions in Image Compression 337

10.2 Design Methods — General Perspective 343

10.3 Design of Perfect Reconstruction Filter Banks 347
10.4 Design of Two-Channel Filter Banks 352

10.5 Design of Cosine-modulated Filter Banks 356

Chapter 11 Applications

11.1 Digitized Fingerprints and the FBI 362

11.2 Image and Video Compression 365

11.3 Speech, Audio, and ECG Compression 383

11.4 Shrinkage, Denoising, and Feature Detection 387

11.5 Communication Applications and Adaptive Systems 391
11.6 Wavelet Integrals for Differential Equations 394

Glossary 403

Appendix 1 Wavelets (American Scientist) 433

Appendix 2 Wavelets and Dilation Equations (SIAM Review) 440
MATLAB and the Wavelet Toolbox 453

References 475

Index 485

Chapter 1

Introduction

1.1 Overview and Notation

We begin with an overview of filters, filter banks, and wavelets. We want to indicate, first in

rough outline and then in detail, the connections between these three topics. Our immediate pur-

pose is to open up the problem and the language — starting with the filter coefficients k(#). The

choice of those coefficients is the crucial decision. Their properties govern all that follows.
Each step is a natural development from the one before:

(1) A filter is a linear time-invariant operator. It acts on input vectors x. The output vec-
for y is the convolution of x with a fixed vector k. The vector & contains the filter coefficients
h(0), h(1), B(2), Our filters are digital, not analog, so the coefficients k(n) come at discrete
times + = nT. The sampling period T is assumed to be 1 here. The inputs x(n) and outputs y(n)
come at all times ¢t =0, +1, £2, ...

ym) = Y h)x(n—k) = convolutionk % x in the time domain.
k

Oneinputx = (..., 0, 1,0,...) has special importance —a unit impulse at time zero. The
input has x(n — k) = G except when n = k. The sum in the convolution has only one term, and
that term is 22(n). This output y(n) = h(n) is the response at time x to the unit impuise x(0} = 1.
It is the impuise response h{0), h(1), ,..., A(N).

In a moment the same filter will be described in the frequency domain, Convolution with the
vector & will become mudriplication by a function H. It is the simplicity of multiplication that
makes this subject a success. The action of a filter in time and frequency is the foundation on
which signal processing is built,

(2) A filter bank is a set of filters. The analysis bank often has two filters, lowpass and high-
pass. They separate the input signal into frequency bands. Those subsignals can be compressed
much more efficiently than the original signal. Then they can be transmitted or stored. We are
describing “subband coding” and its applications. At any time the signals can be recombined
(by the synthesis bank).

It is not necessary to preserve the full outputs from the analysis filters. Normally they are
downsampled. We keep only the even components of the lowpass and highpass filter ousputs.

2 Chapter 1 Intreduction

If there are M filters, then keeping every Mth component of each output gives a total of the same
length as the input. Critical sampling is the key to subband coding.

This book explains how two or more filters, with downsampling, can jointly achieve proper-
ties that are impossible for a single filter. We are particularly interested in “perfect reconstruction
FIR filter banks™. In this case the reconstructed output ¥(n) from the synthesis bank is identical
to the original input x to the analysis bank (with only a time delay). In matrix language, a banded
matrix (for the analysis bank) has a banded inverse (the synthesis bank).

In the frequency domain, each filter leads to a multiplication. But downsampling is nof a
time-invariant operation. If we delay all components of y by one time unit, the output from
downsampling is totally different. The new samples y(—1), (1), ¥(3) are entirely separate and
independent from the original samples y(0), ¥(2), y(4). Those two subsampled signals are two
**phases” of y, not connected. Therefore downsampling alters the multiplication picture in the
frequency domain. In fact it introduces aliasing.

Chapter 4 will show how the simplicity of multiplication can be rescued by looking at each
phase separately. Each phase of y comes from filtering the phases of x (using phases of k). These
separate pieces are multiplications in the frequency domain. The whole operation together, fil-
tering followed by downsampling, becomes a matrix multiplication — by the polyphase matrix.

This 1s the foundation of filter bank theory (still to be explained in detail!). The analysis
polyphase matrix H, will reveal the correct synthesis bank for perfect reconstruction. That syn-
thesis filter bank uses H L

(3) Wavelets are basis functions w (¢} in continuous time. A basis is a set of linearly inde-
pendent functions that can be used to produce alI admlsSIble functlons f (r)

f(r) = combmatlon of basns functlons = Z b ik w‘,k(t)
ik

(L.1)

The special feature of the wavelet basm is that alI functlons w }k(t) are constructed from a single
mother wavelet w(r). This wavelet is a small wave (a pulse). Normally it starts at time ¢ = 0
andends attimer = N,

The shifted wavelets wyy start at time ¢ = & and end at time ¢ = k-+N. The rescaled wavelets
w jo start at time ¢ = O and end at time ¢ = N /2/. Their graphs are compressed by the factor 27,
where the graphs of wy; are translated (shifted to the right) by k:

compressed: wjo = w{(2/1) shifted: wy () = wit — k).
A typical wavelet wj; is compressed j times and shifted & times. Tts formula is
o= wn 8.
The remarkable property that ts. achlcvcd b).f\;l\'lany wavclcts is orthogonality. The wavelets
are orthogonal when their “inner products™ are zero:

fu <]
f wj (1) wyg (1) dt = inner product of wj, and w;x = 0. (1.2)
In this case the wavelets form an orthogonal basis for the space of admissible functions. This
basis corresponds to a set of axes that meet at 90° angles — as most good axes do. Orthogonal-
ity leads to a simple formula for each coefficient b,k in the expansion for f(¢). Multiply the

1.1 Qverview and Notation 3
expansion displayed in equation (1.1) by w; (¢} and integrate:

fe <] [=e]
@ wie@ydr =bix [i@t (13
—00 -0

All other terms in the sum disappear because of orthogonality. Equation (1.2) eliminates all in-
tegrals of w; times w;x, except the one term that has j = J and k = K. That term produces
(wy K(r))z. Then &, is the ratio of the two integrals in equation (1.3).

As we describe the connection between filter banks and wavelets, you will see that it is the
“Highpass filter” that leads to w(t)}. The “lowpass filter” leads to a scaling function ¢ (¢}. In most
constructions the lowpass filter comes first — the scaling function is obtained before the wave-
det. In fact the scaling function (in continuous time) comes from infinite repetition LL ... L of
the lowpass filter, with rescaling at each iteration. The wavelet follows from ¢{z) by just one
application of the highpass filter.

Multiresolution

At a given resolution of a signal or an image, the scaling functions ¢ (2/1 — k) are a basis for the
set of signals. The level is set by j, and the time steps at that level are 27/, The new details at
level j are represented by the wavelets w (2/1 — k). Then the smooth signal plus the details, the
¢’s plus the w’s, combine into a multiresolution of the signal at the finer level j + 1. Averages
come from the scaling functions, details come from the wavelets:

signal at level j (local averages) N
+ signal at level j + 1
details at level j (local differences) 7

That is multiresolution for one signal. When we apply it to all signals, we have multiresolution
for spaces of functions:

V; = scaling space at level j N
& Vi1 = scaling space at level j + 1
W; = wavelet space at level j

This idea of multiresolution is absolutely basic to wavelet analysis. Again, we are only intro-
ducing it. We are sending a coarse signal to the reader, not the details. You only have the input
atlevel 1.

Thus the signal is divided into different scales of resolution, rather than different frequen-
ctes, The “time-scale plane” takes the place for wavelets that the “time-frequency plane™ takes
for filters. Multiresolution divides the frequencies into octave bands, from w to 2w, instead of
uniform bands from @ to w4+ Aw. The compression of a graph, when f(t) is replaced by f(21),
means expansion of its Fourier transform from F{w) to 3 F (£). Frequencies shift upward by an
octave, when time is rescaled by two. You will see how the time-frequency plane is partitioned
naturally into rectangles of constant area (Figure 1.1).

This matching of long time with low frequency and short time with high frequency occurs
in a natural way for wavelets. It is one of the attractions of a wavelet decomposition.

To the reader: We have reprinted in Appendix A an article on wavelets published in the
American Scientist of May 1994, This article introduces wavelet notation through its correspon-
dence with musical notation. In music, each note specifies a frequency and a position in time.

4 Chapter 1 Introduction

@ (or scale level j)

@ & [8
j=
j=
B =1 -

At=2

—
—

Am, At fixed

Figure 1.1: Time-frequency squares for Fourier decompositions become rectangles for wavelets,
Short time intervals are natural for high frequencies.

Its vertical placement gives frequency, its horizontal placement indicates time. A musical score
is almost a wavelet decomposition —except that it has fractional jumps in frequency. There are
notes between middle C and high C, while wavelets jump by octaves. The shortest note I have
seen is a 32nd note, corresponding to level j = 5 (because 27° = 3’—2). Wavelets often stop there
too, in practice. But in principle the scale level j goes to infinity,

That article on wavelets was written for a nontechnical audience, but it aims to explain the
essential ideas. In the wavelet decomposition, all instruments play the same tune! They have
different amplitudes and they play at different speeds and different times. The basses contribute
the coarsest signals bo; w(z — k), starting at integer times ¢ = & and overlapping. The cellos play
an identical tune but twice as fast. They contribute b w(2s — k), starting at half-integer times
1 = k/2 and again overlapping. The violas and violins add details at levels j = 2 and j = 3.
Those details are wavelets w(4¢) and w(8¢) and their translates. It is the orthogonality of all
these tunes, and especially the localization of each tune into a short time interval, that makes it
possible to decompose the symphony efficiently.

Similarly it is orthogonality (or biorthogonality) and localization that make wavelet decom-
positions attractive for other signals.

Frequency Domain and Notation

To see a filter as a multiplication, we must take Fourier transforms. This will be the discrete-time
Fourier transform, since the vectors x(n) and A(n) and y(n) are discrete. The time index n goes
from —oc to 00. (A vector with zero components at all negative times is called causal.) The
transform of x has two reasonable notations. They both stand for the same transform, which we
denote by X

o9

X'y = Zx(n) e~/ (signal processing notation)
-0
m .

X(@) = Y x(m)e™™ (reduced notation).

-0

1.1 Cverview and Notation 5

You see two differences. On the right side, one uses j and the other uses i. Both represent +/—1.
On the left side, the standard signal processing notation uses ¢/® while the reduced notation
writes only w. (Each has advantages and we are prepared to print the book both ways!)

The standard notation allows a direction conversion of the Fourier transform to the z-trans-
Jorm. The tansform is still X but the variable becomes z:

=R

We simply replace ¢/“ by z, extending the formal definition of X from e/ on the unit circle to
z in the whole complex plane. (Remember: e/ has magnitude 1.) The Fourier transform will
dominate the first part of the book, but the z-transform appears more frequently in the end.

The reduced notation has the advantage of outstanding simplicity. There will be many, many
occasions to write X () and X (w + 7) or to write X (¢/?) and X (¢/“+™)), The first occasion
is the most important right now, and we want to express the action of a filter both ways:

Convolution by / in time becomes multiplication by H in frequency:

Y(’®) = H('®)X(e’) insignal processing notation
Yw) = Hw)X(w) in reduced notation.

This is the transform of y(n) = }_ h(k) x(n — k). Exercise 10 will ask you to verify this funda-
mental fact. It is the “convolution rule”. In the z-domain it becomes ¥(z) = H(z) X (z). The
only inputs to the proof are the definition of convolution and of the transform.

Decision on notation. Simplicity often wins. We keep the freedom to write X () rather than
X (&/*). In reduced notation, the frequency response is H(w):

Hw) =) hn)ye ™.

This is the response at frequency ¢ to a unit input at that frequency. When the input at each
frequency is X (w)} = 1, the output at each frequency is H{w). Those inputs are coming from
an impulse (all X (o) are equal). Then the frequency response is the transform of the impulse
response:

When the input is a unit impulse x(0) = 1, the output is y(n) = h(n).
WW[I the input is a wnitimoulse X (w) = 1. the outout is Y(m) = Him\.

6 Chapter 1 Introduction

Convolution by Hand

A good way to compute ¥ = & +x is to arrange it as an ordinary multiplication — but don’t carry
digits from one column to the next:

x(2) x(1) x(0) 3 24=1x
h(2) A(1) B(0) 1 52=nh
2 O O 6 48
3 @ O 15 10 20
@ 3 @ 3 2 4
y@) y3) ¥y y1) y©O) 3172024 8 =y

The coefficients x{n) = 4, 2, 3 addto X(0) = 9. The sum of k(n) = 2, 5, 1 is H(0) = 8.
Then notice that the sum fory = kA xx is H(0)X(0) = 72,

Another check is at @ = x. The alternating sum 4 — 2 + 3 gives X(x) = 5. Similarly
H(m) = —2. Then necessarily Y (xr) = (5)(—2). This agrees with the alternating sum 3 — 17 +
20-24+8=-10.

Problem Set 1.1

1. Suppose the only nonzero components of x and & are x(0) = 1, x(1) = 3, and h(0) =
Al = % Compuie the outputs y{n). Verify in the frequency domain that ¥ {w)
H{w) X (w).

2. What are the components k({n) for the filter to become a simple advance? For any input vec-
tor x(n}, the output is y(r} = x(n + 1). Find H (w) for this filter and verify that ¥ (w) =
Hi{w) X (w).

1
2‘

3. If the input filter vector x and the vector & are both causal, explain why the output y is also
causal (meaning that y{n} = 0 for negative n). If k is cansal and if x{(n) = O foralln < 8,
what can you conclude about y(#)?

4. If the output vector y is causal whenever the input x is causal, explain why the vector & must
be causal.

5 If8=(..,0,0,1,0,0,...) is the unit impulse at time zero, show that convelution with any
vector v leaves that vector unchanged. Translate this statement v » & = v into the frequency
domain,

6. What are the seven compoenents of & « b, if k(0) = A{1) = h(2) = h(3) = 1 (all other
h(n) = 0)?7 Use the long multiplication format in the text.

7. The long multiplication format corresponds to thinking of & and x as (D) + 10k(1) +
100k(2) + - - and-x(0) + 10x(1) + 100x(2) + --.. The product begins with k(0) x(0) +
10(—) 4+ 100(—).

This is the convolution rule ¥ (z) = H(z) X (z) with z = 10.

8. Verify the convolution nule ¥ = H X in the important special case when k(1) = 1 and all
otherA(n) =0. Thus, b= (..., 0,0,0,1,0,...).

I Whatisy=h+x=h*x (.. . x(—1}),x(0), x(1),...)?
2. What is H (¢/°), also written H(w)?
3. In this special case the filter H represents a

4. Verify that }_ y(n) e~ agrees with H (e7) X (&/°).

1.2 Lowpass Filter = Moving Average 7

9. Repeating the previous exercise & times shows that Y = H X is still correct when H is a k-step
delay: h(k) = | and ali other &(n) = 0. The frequency response for this delay is H =

An arbitrary vector is a linear combination of delays (and also advances!). By linearity, ¥ =
HX is troe in general.

10. (Important) A direct approach to the convolution mle ¥ = HX. What is the coefficient of
z” in (T hk) 27%) (L x(£) 27¢)? Show that your answer agrees with 3" A(k) x(n — k).
The exponenit —n appears in H times X when & +/ equals ____

11. The autocorrelationp =k * k' is the convolution of h with its time reversal (or transpose):
AT (n) = h(-n). Express the kth component p(k) as a sum of terms.

1.2 Lowpass Filter = Moving Average

We go forward with this introduction by studying the simplest lowpass filter. Its output at time
t = n is the average of the input x(n) at that time and the input x(n — 1) at the previous time:

(1.4)

Y h(k)x(n — k), with only two terms & = O and ¥ = 1 in the sum. This is a convolution
y=h+x. Itis a moving average, because the output averages the current component x(r) with
the previous one. Old components drop away as the average moves forward with the time.

Suppose the input is the unit impulsex = (..., 0,0,1,0,0,...). Then there are only two
nonzero components in the output. The input vector has x(0) = 1; all other input components
are zero. The output vector has y(0) = %, from equation (1.4) with n = 0. It also has y(1) = %,
from equation (1.4) with n = 1. All other outputs, or moving averages, are zero. Thus the
impulse response is the vectory = (..., 0,0, 3, 1,0, ...). Its components agree with the filter
coefficients A(r) as they should.

We want to see this filter as a linear time-invariant operator. Itis 2 combination of two special
operators, the “identity” which yields output = input and the “delay” whose output is the input
one time earlier:

averaging filter = %(identity) + %(delay).

Every linear operator acting on the signal vector x can be represented by a matrix. Since the
vectors are infinite, so are the matrices. Infinitely many components in x and y mean infinitely
many entries in the filter matrix H. The matrix has a special structure which you see immediately
iny = Hx:

x(—1)

Wl

y(=1 1
¥y = " x{0)
1
3

y(1)

EEETE

x(1)

The numbers § on the main diagonal come from 1 (identity). The numbers 1 on the subdiagonal
come from % (delay). Substitute the unit impulse for x, with x(0) = 1 as its only nonzero com-
ponent. Matrix muitiplication produces the impulse response y. This vector has components %

8 Chapter 1 Introduction

and % The response y is the filter vector A, in the middle column of the matrix, when x is the
unit impulse.

This is a first occasion to see a filter as a constant-diagonal matrix. The coefficient A(Q)
appears constantly down the main diagonal. It represents 2(0) times the identity matrix and it
yields R(0) x(n). The coefficient k(1) appears down the first subdiagonal, to represent2(1) times
adelay and to yield k(1) x(n — 1). If there is a coefficient #(2) down the next diagonal, it multi-
plies a two-step delay and yields #(2)} x(n — 2). The total output y(n) is the sum of these special
outputs:

yiny = AOx(n)+h(Ixin—1)+h2Dx(n ~-2)+.-.
=) h)x(n—k).
k

The reader notices that (— 1) is not being allowed. We are dealing with causal filters; the output
cannot come eatlier than the input. This makes A(rn} = 0 for negative n, and it makes the filter
matrix lower triangular.

Our example has only a finite number (two) of nonzero filter coefficients k(). The filter has
afinite impulse response. 1t is an “FIR filter”. For large #, the coefficients k(n) that give distant
responses to the unit impulse are all zero.

To repeat: A causal FIR filter has k(n)} = O for all negative r and for large positive n. The
matrix is banded and lower triangular. Only a finite number of coefficients 2(0), A(1), . .., A(N)
can be nonzero. The filter has N + 1 “taps”. The matrix has bandwidth N all other diagonals
contain zeros. We concentrate almost exclusively on causal FIR filters.

Frequency Response

To find the frequency response to the filter, we change the input vector. Instead of an impulse,
whjch combines all freauencies the vector x will have pure freavencv w. Its compopents arg

P Y (R TIY | [vy

)

¥ is a multiple (depending on w) of the input vector x. A linear time-invariant operator, which
is represented by a constant-diagonal matrix, has a pure frequency response to a pure frequency
input. For our moving average this response is

yin) = jxm+ix(n-1)
= %einw + %ei("_l)m
(3 +3e7) e (1.6)
You see in parentheses the frequency response function H(w) = % + %e""". Notice that H =
1 +4 = 1whenw = 0. At zero frequency (direct current) the signaix = (..., 1,1, 1,...)

comes out unchanged asy = (..., 1,1, 1,...). The low frequencies, near @ = 0, have H(w)
near 1. Thus the name “lowpass filter”.

e -y s w o e e L A, 7, T S I N T

1.2 Lowpass Filter = Moving Average 9

This function is always periodic: H(w+2m) = H(w). When we add 27 to the frequency @, we
add 2z n to the angle nw. The cosine, sine and complex exponential e~ = cos nw — i sin nw
are not changed.

Note that the response function H{(w) involves complex numbers. We strongly prefer ¢'“ or
¢! (o its rectangular form cos w + i sin . Separate formulas for the real and imaginary parts
are much more complicated than a single formula for H (w). But a single graph cannot so easily
represent this complex function. One way to do it is to plot the magnitude |H (w)| separately
from the phase angle ¢ (w), recalling that

H(w) = |H(w)| €.

Our example has H(w) = § + e~ We factor out ¢=**/2 to leave a symmetric quantity

1 (¢“* + ¢~i#/2). This quantity is a perfect cosine:

= DN -iwf2
H(w)-(cosz)e . (1.8)
This displays the magnitude and also the phase:

|H(m)|=cos§ and ¢(w)=—%. (1.9)

| H(®)|

1 -
-R 0 o - 0\t ®

Figure 1.2: The magnitude | H (w)| = cos (%) and the phase of H(w).

Figure 1.2 shows the plot of the magnitude | H (w)| against the frequency . The cosine of £
drops to zero at @ = 7. This high frequency is wiped out, when the filter takes a moving average.
In the time domain, @ = & corresponds to the input vector x(n) = ™" with components (—1).
This input vector is

x=(...1,-1L1,-1,1,...%

The moving average of these components is constantly zero! This confirms H(x) = 0 as the
correct response to the frequency @ = 7.

This is a lowpass filter. The lowest frequency @ = 0, which is the DC term (direct current),
isexactly preserved because cos 0 = 1. The input vector (..., 1, 1, 1, ..) is equal to its moving
average.

The phase ¢ {w) is the angle from the horizontal when the complex number H (w) is plotted
in the complex plane. For this particular response, those points H{w) = '5 + %e*"“’ lie along a
circle. The constant term 5 is the center. Then 3¢~ produces a circle of radius § around that
center. Figure 1.3 shows this “Nyguist diagram”,

10 Chapter 1 Introduction

Figure 1.3: Nyquist diagram of the points H (@) in the complex plane,

The graph of ¢ (@) = —% is a straight line. This is an example of “linear phase”, an impor-
tant propetty that some special filters possess. It reflects the fact that the filter coefficients -% and
% are symmetric. Reverse the order of coefficients and nothing changes.

Note that if the filter coefficients were symmetric around zero, so that A{(—1) = k(1) and

h(—2) = h(2), the frequency response would be real:

Hw) = h@+h(1) (£“+e) +... (symmetric coefficients)
ROY+A(1Y(2cos) + - -+ (real response function)

In this case the phase angle is ¢ = 0. The response has “zero phase™. Similarly, coefficients
that are antisymmetric around zero produce a pure imaginary H (w). The phase is § or ~%. If
h{—n) = —h(n) then k(0) =0:

Hw) = h)(=“+e7*)+h(2) (~e¥* +e7¥9) 4 ... (antisymmetry)
=2i [R(D)ysinew + A2} sin2w + - -] (imaginary H (w))

Zero phase is ruled out for a causal filter. The coefficients can be symmetric or antisymmetric,
but not around n = 0. Causal filters have linear phase when their coefficients are symmetric or
antisymmetric around the central coefficient:

hky = h(N —k) (symmetry)

Linear phase h(k)y = —R(N—k) (antisymmetry)

Moving the center of the symmetry from 0 to N /2 produces a factor e~*¥«/2 in H (). This
means a linear term —Nw/2 in the phase. The magnitude | H (w)] is an even (symmetric) func-
tion because H(—w) is the complex conjugate of H(w). The graph of |H{(w)| for0 < w < 7
displays complete information,

The exercises ask you to compute |H(w)|* = %(1 + cos @). Then a trigonometric identity
produces our special form cos 3: '

29
2

sothat |H(w)] = |c039

2_ 1
[H(w}|” = 3 (1 +cos w) =cos 2|.

For other filters, | H (w)|? is a cosine series but its square root | H (w)| has no simple formula.

1.2 Lowpass Filter = Moving Average

6

-

10.

11.
12.

Problem Set 1.2

. The magnitude squared is H () times its complex conjugate H(w). Show that [H(w)|* =

1 (1 4 cos w) for the moving average filter.

. Obtain the same result from |H(@)[> = (real party*+ (imaginary part)®, with H(w) = 1

+1(cos » — i sin w).

. Why is the formula | H ()| = cos § wrong beyond the frequency w = a? Draw the graph of

|H ()| from =2 to 2.

. Inthe complex plane, draw tan ¢ () as the ratio of the imaginary part Im H (w) to the real part

Re H{(w). Simplify this ratio to —tan §.

Solution. The phase ¢ {(w) is the angle from the horizontal, so the tangent of ¢ (w) is the ratio
of imaginary part to real part:

ImHw) —jsine

tan ¢ (@) = Re H{w) jticosw

Again trigonometric identities make this unusually simple:

$(@) —sin % cos %
tan@iw) = =
cos? %

. Find the frequency response H () and its magnitude and phase, for the 3-point moving aver-

age filter with 2(0) = A{1) = 2(2) = :-" Does it have zero phase, constant phase, or linear
phase?

What infinite matrix H represenis the filter with A{(Q0) = k(1) = k(2) = -;-? Find two input
vectors x(n) for which the output is Hx = 0.

Solution. x=1(...,2,-1,-1,2,—1,—1,..) and ¥’ = delay of x.

. What is the phase ¢ (@) of a symmetric <er with k(k) = k(8 — £)?

What constant-diagonal matrix represents the anticausal filter ' with coefficients A'(0) = %
and k' (~1) = %? What maltrix represents the symmetric filker F = H'H and what is the
frequency response of F?

, Find causal filters whose magnitude responses are | H (w)] = | cos«| and |H (w)]| = (cos %)2.

Are they unique?

Iterate the averaging filter four times to get K = H*. What is K () and what is the impulse
response k(n)?

Why is an antisymmetric filter, with k(k} = —h(N — k), never lowpass?

Consider an averaging filter with four coefficients k(0) = A(1) = B(2) = () = i and the
input x(r) = (—1)*. What is the output y(n) = x(n) * h(n)? Without computing H(w),
explain why h{n) is lowpass.

. Let H(z) be a lowpass filter with N + 1 coefficients and let G(z) = z~Y H(z"!). Findg(n) in

terms of k{n). What is the phase of G(w) if H is symmetric? Is G(z} lowpass or highpass?

"

12 Chapter 1 Introduction

1.3 Highpass Filter = Moving Difference

A lowpass filter takes “averages™. It smoothes out the bumps in the signal. A bump is a high-
frequency component, which the lowpass filter reduces or removes. The response is small or
zero near the highest discrete-time frequency w = .

A highpass filter takes “differences”. It picks out the bumps in the signal. The smooth
parts are low-frequency components, which the highpass filter reduces or removes. Now the
frequency response is small or zero for frequencies near @ = 0 (which is direct current and has
no bumps).

The lowpass filter that outputs the moving average % (x{n} + x(n — 1)) bas a twin (or mirror)
filter. This is the highpass filter that computes moving differences:

Highpass: y(n) = 1x(n) — Lx(n - 1). (1.10)

The new filter coefficients are A(Q) = % and A{l) = —-2'-. Equation (1.10) is a convelution
¥ = h xx, and the vector k for this highpass flter is

h={(.,001%-10..). (1.11)

This k is exactly the response to the impulsex = (...,0,0,1,0,0,...). Attime zero, the dif-
ference 3 (x(0) — x(=1)} is (1 — 0). The next difference § (x(1) — x(0)) is 1(0 — 1). Those
numbers 4 and —3 are the coefficients in k.

This unit impulse at time zero we will denote by &. In the language of convolution, we are
sayingthat § ={...,0,0,1,0,0,,..) always yields

h+«&=h. (1.12)

In the language of matrices, multiplying any matrix times the special column vector & always
picks out the zeroth column of the matrix. The matrix for our highpass filter does have '5 and —%
in its zeroth column:

— - s - -—

x(—1)

[
=

y=1 -

y0 | = -5 3 x0) |. (1.13)
y(1) -4 4

x(1)

This is again a constant-diagonal matrix because the filter is again time-invariant. (We define
and discuss time-invariance in the next chapter.) The main diagonal entries produce %(identity).
The subdiagonal entries give —%(delay). The filter as a whole is

highpass filter = 1 (identity) — § (delay) = 11— 18. (1.14)

This is another causal FIR filter with two taps, but its frequency response is completely different
from the lowpass function Hy(w) = § (14 ¢7).

1.3 Highpass Filter = Moving Difference 13

Frequency Response
At frequency w, the input vector is x(n) = ", The highpass output is

y(n) = % einw _ % e:‘(n—])m
= (% - %e‘—im) e:‘ﬂw
= H{w)e", (1.15)
This quantity H; (w) = — - 5 e~ is the highpass response. We want to graph it and compare it
with Hy(w) —the lowpass response. We are introducing the subscripts 0 and 1 for lowpass and
highpass.
As before, we take out a factor e=**/2. This leaves a sine not a cosine:
Hi@) =} (¢ = e1P) e/ = sin (3) ie~io, (1.16)

The magnitude is | H; (w)| = |sin %I Since the sine function can be negative, we must take its
absolute value,

1=+
Hoy=* _ @
2

2
=1 gin®
IH](O)j = s:n? \
1 1 - 1 -
- 0 T @ —N T ow
n w
2

Figure 1.4: The magnitude and phase of the highpass filter 1 — 1 e,

The graph of | Hj{w}| is in Figure 1.4a. Tt shows zero response to direct current, because
sin0 = 0. It shows unit response at the highest frequency @ = x, because sin 7 = 1. Inthe
time domain, these numbers come from taking differences of the lowest and hlghest frequency

inputs:
ow =(...LLLLL...}) and wpygh=(..,1,~1,1,—-1,1,..).

The response 10 Xjow is 0.x14w. The response to Xhigh 18 1 Xpigh. The first vector has no bumps and
the second vector is all bumps.

The phase factor in H) (w) is a little tricky. When the magnitude |sin £ 2[is removed, we are
left with a sign change at « = 0

ew(w) — { i e“""ﬂ for —m<w=<{

+ie~i®2 for O<w<m.

Changlng i to ¢'™/2, we see a discontinuity in the phase. Figure 1.4b shows how ¢ () j jumps
from —% to 4% at @ = 0. At other points the graph is linear, so we turn a blind eye to this
dlscontmulty and say that the filter is still linear phase. It is the zero at @ = 0 that causes this
discontinuity in phase.

14 Chapter 1 Introduction

Invertibility and Noninvertibility

In any reasonable sense, the averaging and differencing filters are not invertible. The constant
signalx = (..., 1,1,1,1,1,...) is wiped out by H,. There cannot exist a filter Hl'l that recov-
ers this x from the zero vector. A linear operator cannot ratse the dead — it only recovers 0 from
0. If a filter H has an inverse, the only vector in its nullspace is that zero vector:

If H is invertible and Hx = 0, then H 'Hx = 0 and thus x = 0.

The frequency response of an invertible filter must have H (w) # 0 at all frequencies. Our filters
are not invertible because Ho() = 0 and H(0) =

The lowpass filter wipes out the alternating signal x = (..., 1,-1,1,—1,...). We cannot
recover this x from zero output.

Note. When the inverse filter exists, it has frequency response 1/H (w). Multiplication will
recover the input, because H{w)/H(w) = 1. We are safe as long as H(w) is nonzero.

Suppose we attempt this inversion for the moving average. It is doomed to failure because
Hy(mt) = 0, but we can compute the filter coefficients that come from 1/ Hp(w):

1

W=2(l—e_’-“’+e_2f“’—e'3*""+‘--). (1.17)
1t3

Those coefficients 2, —2, 2, —2, ... go down the diagonals of the inverse filter matrix:

(1 El
[S] Ll S Bl

H'H= 2 =2 2

[EIEN T B

A= =

| —

We seem 1o have found an inverse, but it is not a legal filter. This H™' is not stable. The bounded
inputy = (..., 1,—1.1, =1, 1,...) would produce an unbounded output H'y. The series ex-
pansion in {1.17) breaks down completely at w = 7, where | + ¢~ = 0

1
= =2(1+1+1+1+..).
3tze™”

=g

But also note: If the input signal contains n¢ frequencies near w = m, then we could reconstruct x
from y. The output y would also have no high frequencies. Dividing by H (w) would not involve
dividing by zero.

The lowpabs filter with coefficients A(0) = £ Zandh(l) = ; is sately invertible. Its frequency

response 3 + 1e~* is never zero. The rcspome atw =01s % 241 =1 Theresponseatw =7

is 3 — 2 = L. The convolution with &t = (..., 0, % 1,0)Ldn be undone by deconvolution.
To hnd the deconvolutmn coefficients, Wthh enter the inverse filter, divide by H («w):

1 = é | — 1€—iru + le—ziw _ _I_(l—'lim + (1 18}

% + %g—fw 2 2 4 8 '

Those coettictents %, —%, %, —%, ... go on the diagonals of the inverse fifter matrix. Itis an IR

filter, with infinitely many coefficients.

1.4 Filter Bank = Lowpass and Highpass 15

The main point is analysis in the frequency domain. Dividing by + § ¢~ inverts the filter
(and the constant-diagonal infinite matrix) for deconvolution.

Final remark. The inverse filter is very rarely FIR, because 1/ H (w) is not a polynomial. To
invert a finite length filter with a finite length filter, we need to go to a filter bank. That comes
next.

Problem Set 1.3
1. Can a symmetric filter, with k() = A{N - k), be a highpass filter?

2. Draw the graph for J| < m of “ideal” lowpass and highpass filters Ho(ew) and H;(w) with
Hy(w) + H (@) = 1. Why don’t we use these filters exclusively?

3. Which of the following filters are invertible? Find the inverse filters:
(@) h(0)=2 and k(1) =-1

3
B MDD =2and h{2)=1
© k=% (n=012.)
4, Invent a highpass filter X with three or four taps {coefficients) that is better than the moving
difference H,: the goal is

1K (@) < |H((@)| for 0 < ol q%

and ;rr
|Hij(@)] < |K{w)| <1 for £y < |w| < x.

5. Find all input signals x(n) that are cut in half by the moving difference H), so that H x(n) =
4x(n). Answer in the frequency domain.

6. Important 1If Ho{w) is the response of a lowpass filter, what is the response Hj (w) of a corre-
sponding highpass filter? IfA(0), . . ., A(N) are the coefficients of Hy, what are the coefficients
of your H,?

7. Let H(z) be symmetric lowpass with 2K + 1 coefficients. What is the phase of G(z) = 2% —
H(z)? Sketch the amplitude response if H () is 3-band (near 1 for lo| <). Is G lowpass
or highpass?

8. Asimple highpass filter design is G(z) = H(—z). What is the relation between g(n) and i(n)?
With H{w) as in Problem 7, sketch G(w).

9, I G(z) = H(~z"") find g(n) in terms of A{n). If H(z) is highpass show that G(z) is lowpass.

1.4 Filter Bank = Lowpass and Highpass

Separately, the lowpass and highpass filters are not invertible. Ho removes the highest frequency
o = 7, and H, removes the lowest frequency @ = 0. Together, these filters do something very
desirable. They separate the signal into frequency bands. The filtered output Hox is weighted
towards low frequencies, and Hx is in some way the complement. The cutoff is not sharp, be-
cause these filters are so crude. But they make up the beginning of a filter bank.

One difficulty: the signal length has doubled. If the input x is nonzero over atime T, so are
the outputs from both filters. If the first nonzero input is x(0) and the last is x(7), then Hox and
Hixend attime T + 1 (because of the final average and difference). One extra component is no
problem, but doubling the storage by keeping two full-length outputs is unacceptable.

The solution is to downsample (or decimate).

16 Chapter 1 Introduction

Downsampling

We can keep half of Hyx and Hx, and still recover x. This is an essential part of the filter bank,
to downsample the ovtputs from the separate filters. We shall save only the even-numbered com-
ponents of the two outputs. The odd-numbered components are removed:

2y = (..., y(=4), y(=2),y(0). y(2). (@), ... (1.19)

The symbol |} 2 indicates downsampling or decimation. This is a linear operation (of course),
But it is not time-invariant and it is not invertible. We study it closely in Chapter 3, and already
this first filter bank indicates how it works in practice.

One note about normalization. To compensate for losing half the components in ({ 2), we
multiply the surviving y(2r) by +/2. This normalizing factor (explained below) is usually in-
cluded with the filter bank, so that

lowpass: Hy(w) changesto C(w) = +/2 Hy(w)
highpass: Hi(w) changesto D(w) = V2 H (w).

In the averaging filter, the coefficients increase to 22@ We keep the notation A(0}, (1) for the
original coefficients, and we introduce ¢(0), c(1) for the new (renormalized) coefficients of C:

c(®) =¢(1) = JTE (which is ‘—;5).

Similarly the highpass coefficients 1 and —4 are multiplied by +/2, in D:

N NG 1
- — = dl =——=——,
d(0) > 7 and d(1) 5 7

Systematically in this book, we will write C and D for /2 2H, and +/2H,. The response at fre-
quency @ = 0is C = +/2 rather than Hy=1.

Decimation Filters In the Time Domain

Downsampling follows the filter C, in operating on x. These two steps, filtering and decimation,

can be done with one matrix L. Decimation removes the odd-numbered components, To obtain

(1 2) Cx in one step, remove the odd-numbered rows of the filter matrix C. The combination of

filtering by € and decimation by ({ 2) is represented by a rectangular matrix L that no longer

has constant diagonals. It has 1 x 2 blocks:
Lo

75 V2 1 1
L=(2C= v
The entries are ¢(0) and (1) but half the rows of € have disappeared. Similarly the decimated

highpass filter is represented by a rectangular matrix B = (] 2)D, Removing half the rows of D
leaves the matrix B with a double-shift:

1

7
B=(2)D= -

S
ol
Sl

1.4 Filter Bank = Lowpass and Highpass 17

When the lowpass L and the highpass B go into one matrix, you will see why the normalization
by /2 is desirable. The rectangular L and B fit into a square matrix:

42)¢ | _| L |_
Wp |7 | B |

Sl
[=]
|
L
_

X -

This matrix represents the whole analysis bank. It executes the lowpass channel and the highpass

channel (both decimated). All rows are unit vectors (because of the division by +/2). Those row

vectors are mutually orthogonal. At the same time, the columns are also orthogonal unit vectors.
The combined square matrix is invertible. The inverse is the transpose:

(5]l 7]-

Muitiplying in either order yields the identity matrix. The second matrix [LT BT] represents
the synthesis bank. This is an orthogonal filter bank, because inverse = transpose. We panse
to summarize what you have seen in this example.

The channels L = (] 2) C and B = (] 2) D of an orthogonal filter bank are represented in the
time domain by a combined orthogonal matrix:

[L" BT][;]:L’"L+B"B=f.

S-
[)
—

The synthesis bank is the transpose of the analysis bank. When one follows the other we have
perfect reconstruction. For causality we add o delay.

That summary is a foretaste of later chapters. We will construct longer and better filters, but
the underlying problem will be close to this one. There is an analysis bank and a synthesis bank.
When they are transposes as well as inverses, the whole filter bank is called orthogonal. When
they are inverses but not necessarily transposes, the filter bank is biorthogonal.

In the biorthogonal case, the coefficients in the synthesis bank are different from c(n) and
d(n) in the analysis bank. Our Haar filter bank has orthogonal filters. This chapter pursues it
further, all the way to Haar wavelets.

Block Form of a Filter Bank

The best way to represent a two-channel filter bank is by a block diagram (Figure 1.5). The
input is a vector x. The blocks are linear operators and the output is two half-length vectors:
Lx=(|2)Cx and Bx = (| 2) Dx.

For this special filter bank, we want to display all vectors in detail. Later we could supply
only the essential information: the coefficients ¢(n) and d(n). There will be several ways to dis-
play those coefficients — the filter bank form, the modulation form, and the polyphase form. We

18 Chapter 1 Introduction

0 12 v0=(¢ 2)Cx=Lx

C
X
_[y
D ! 12 v,=¢ 2Dx=Bx

Figure 1.5: Schematic of the analysis half of a two-channel filter bank.

always need the coefficients! Here we use the direct filter bank form, and write the components
of each output vector:

_ 1| x0 + -1 1 e - x-p
=7l @ + = Br=—1 2 - x0
x4y + x(3) x4) - x(3

The odd-numbered components of Cx involved x(1) + (0} and x(3) + x(2). Those are gone
in Lx. Similarly the odd-numbered components of Dx are gone in Bx. We are left with two
half-length signals. Nevertheless we have enough information to recover the full-length input
x —and you see how.

To recover the zeroth component, add x(0) + x(—1) to the difference x(0) — x(—1). That
gives 2x(0). Since our sums and differences are already divided by V2 in the analysis bank, we
need another +/2 in synthesis:

1 fx(+x(—1) x(—x(—l))
0)=— — e . .
x(() 7 (7 + 7 (1.20)
For x(—1), use the same components of Lx and Bx, and subtract:
X=1) = 1 (x(O) +x(—1) _ x(0) —x(—l))
V2 V2 V2)

Addition and subtraction are simple for this example, but the synthesis steps must be organized
in a way that extends to other examples. At the end of the reconstruction, we want to reach these
two vectors wg and w)!

x(0) + x{(-1) -x0) + x(=1
_ 1] x(0) + x(=1) _1 x(0) - x(=1)
M= @ x| ®IMTS o + = .21
x(2) + x(1) x(2) — x(1)

Notice how the signs in w; are adjusted so that wo 4 w; recovers the input vector. Actually we
are getting x(n — 1} instead of x(n). The rotal effect of the whole filter bank is a delay. The input
is x(n} and the output is the delayed x(n — 1). The sum wy + w, is almost, but not quite, the
original x,

A delay is built in because all filters are causal. We analyzed x into low and high frequencies,
Now we synthesize to reach wy and wy and recover x,

1.4 Filter Bank = Lowpass and Highpass 19

The Synthesis Bank

A well-organized synthesis bank is the inverse of the analysis bank. The analysis bank had two
steps, filtering and downsampling. The synthesis bank also has two steps, upsampling and fil-
tering. Notice how the order is reversed — as it always is for inverses.

The first step is to bring back full-length vectors. The downsampling operation (| 2) is not
invertible, but upsampling is as close as we can come. The odd-numbered components are re-
turned as zeros by upsampling. Applied to a half-length vector v, upsampling inserts zeros:

. ¥(0)
v i)
Upsampling 2] »(1) =] ¥} |. (1.22)
¥(2) 0
. r(2)

Upsampling is denoted by (1 2). To understand it, look at the result of downsampling to get
v = (| 2)y and upsampling to get u = (+2)({ 2)y:

- . - "
y(©) : ¥ ()
¥ y(©) 0
y=| »2 (2y=| @) tUDy=| ¥ |. (1.23)
¥(3) y(@) 0
y@4 . ¥(4)
| L

The odd-numbered components of y are replaced by zeros. We will see that (1 2) is the transpose
of (| 2). Fortunately, transposes come in reverse order exactly as inverses do. So synthesis can
be the transpose of analysis — apart from our ever-present delay.

Small note: Also (1 2) is a right-inverse of (| 2). If we put in zeros and remove them, we
recover y. Thus (| 2){(1 2) = I. The order (1 2)(] 2) that we actually use is displayed above,
and it inserts zeros. Properly speaking, (1 2) is the “pseudoinverse” of (} 2) — which has no
inverse,

The vectors reached by upsampling have zeros in their odd components:

" x(0) + x(—=1)] [x(0) — x(=1)]
0 0
L x(2) + x(D) 21 x(2) — x(1)
W = _ﬁ 0 and o = E 0 (124)
x(4) + x(3) x(4) — x(3)

The second step in the synthesis bank, after upsampling, is filtering. The two vectors ug and
u; are the inputs to the two filters, The vectors wg and w are the desired outputs. Schematically,
the structure of the synthesis bank is in Figure 1.6.

Normally we would construct the synthesis filters F and G based on the analysis filters €
and D. That will be-our procedure in the rest of the book. For this example, when we know the

20 Chapter 1 Introduction

dycx —f2 —— F |— ““o\
u xn-1)
(*2)Dx 12] G w /

Figure 1.6: The synthesis half of a filter bank: upsample, filter, and add.

desired outputs, we proceed more directly. The filter F that produces wg from ry is an addition
filter:

x(©0) + x(-1) x(0) + x(-1)
1 0 i x(0) + x(—-1)
F filterss — | x(2) + x(1) togive — | x(2) + x(1) = wo.
V2 0 21 2@ + x(1)

This is the output we want. It comes from a time-invariant causal filter F. There is no separate
treatment of even and odd components! When the input to F has components i (n), the output
has components

Fu(n) = -‘/Li(u(n) + u(n — 1)), (1.25)

The filter coefficients are G(0) = f(1) = .

The second synthesis filter G is a subtraction filter. Its coefficients are i—, and -;7'5 For an
arbitrary input vector &, the output has components % (—u(n) + n{n — 1)). Notice especially
how G acts on &y = (42)(] 2} Dx:

x(0) — x(~1) -x(0) + x(-1)
1 0) x0) — x(-D
G filters — | x(2) — x(1) ogive —| —x(2) + 2 = wy.
V2 0 2 - x(I)

The filter gives the right result, again without treating even and odd components differently. We
caution that the highpass coefficients are in the order — -1 s, % When you transpose D, the order
of coefficients is reversed. Then a delay makes G a causal filter (and the same for F).

The only other caution concerns the factors % They are present in all four filters. A less

perfect symmetry would have % in one bank and 1 in the other bank. This is exactly like the two-
point discrete Fourier transform, where we often allow % and 1 in the matrix and its inverse. The

orthogonal matrix has - in both:

V2
-1
[: _11] [: _11] inverse matrices with 1 and 1

VZ V21T [N 2 o
[1742 _1/\/5] Tz -1z orthogonal matrix with 1/+/2.

An orthogonal (or unitary) matrix has orthogonal rows and otthogonal columns normalized to
be unit vectors. The inverse is the transpose (or conjugate transponse). It is an accident for this

b=

1.4 Filter Bank = Lowpass and Highpass

example that the matrix is real and symmetric. You can’t see that it was transposed and conju-
gated.

Important. The connection between this Haar filter bank and the 2-point DFT is no accident.
The simplest M-band filter bank comes from an M-point DFT. It is called a uniform DFT filter

bank. We are seeing the case M = 2, written as an ordinary filter bank (and made causal by a

delay).

We summarize this section with a schematic of the wheole filter bank (Figure 1.7).

This allows us to indicate the symbols y, &, v, w for the outputs at the four stages. For a
two-channel bank, we mark those vectors in the lowpass and highpass channels by subscripts 0

x{n—1}

Figure L.7: The analysis bank followed by the synthesis bank.

and 1. When there are M channels, we need subscripts 0, 1, ..., M — 1.
From the filter bank, the next step is to wavelets.

10.

11.

Problem Set 1.4

. Write down the matrix (] 2) that executes downsampling: (] 2) x{n) = x(2n).
. Write down the transpose matrix (1 2) = (| 2)7. Multiply the matrices (1 2} ({ 2) and

(42) (12). Describe the output from (2) y(n).

. Describe the output from (J 2)% x(n) and (1 2)* y(n).
. Send the signal with x(0} = x(1) = x(2) == 1 through the whole filter bank, and give the

output at every step.

. Puteachrow[—1 1 J/~2ofB=(2)Daftertherow[1 1]/~/20fL=(}2)C.

In this order we see a block transform. What is the inverse transform?

. Show how to delay an anticausal (= upper triangolar) filter matrix so it becomes causal. If the

coefficients #(0), . . ., B(N) are on the diagonals of the anticausal matrix, what are the diago-
nals after the delay? Give the two frequency responses, anticausal and causal.

. The 4-channel bank analogous to Haar is based on the 4-point DFT matrix F,. Find F4 and

the four analysis filters and the outputs after downsampling by (1 4).

. Suppose a matrix has the property that Q7@ = I. Show that the columns of are mutually

orthogonal unit vectors. Does it follow that @ @7 = I?

. In a transmultiplexer, the synthesis bank comes before the analysis bank. Compute LLT and

LBT and B BT (o verify that the Haar transmultiplexer still gives perfect reconstruction:
L T rq_[LLT LB” | _[¥ O
[B][L B]‘[BLT BB" |0 I |
Compute the subband outputs vo(n) and v, (1) for the average-difference filter bank with input

xmy=0, 1, =1, 2, 5 1, 7, 0.Reconstruct the signal by feeding v, (#) into the synthe-
sis bank in Figure 1.6. Verify that the output is x(n — 1).

If Hy(z) = 1 and H(z) = z~' (no filtering) write the entries of[;] [L7 B)=1

22 Chapter 1 Introduction

1.5 Scaling Function and Wavelets

Corresponding to the lowpass filter, with h(0) = % and k(1) = %, there is a continuous-time
scaling function ¢(¢). Corresponding to the highpass filter, with coefficients % and —%, there
is a wavelet w{r). We now describe the dilation equation that produces ¢(z) and the wavelet
equation for w(t).

You will see how the filter coefficients (the c’s and d's) enter these equations. Two time scales
also appear. This joint appearance of ¢ and 21 is the novelty of the dilation equation. It is also
the source of difficulty! We have a “two-scale difference equation”. Later we develop the back-
ground of these equations and a general method for solving them. Here we quickly recognize
the box function as ¢(t). Then we construct the wavelet w(f) and use it.

The dilation equation for the scaling function ¢(¢) is

N
P =V2)_clk)p(2t — k). (1.26)
k=0
In terms of the original lowpass coefficients A(k), the extra factor is 2:
N
Bty =2 hk)p(2t — k). (1.27)
k=0

This involves a function ¢{t) in continuous time, and a set of coefficients c(k) or A(k) from
discrete time. The presence of r and 2r is the key. Without the 2 we would have an ordinary
constant-coefficient equation {look for exponential solutions). With two time scales, there
are major changes:

1. There may or may not be a solution ¢{t).
2. The solution is zero outside the interval 0 <t < N.
3. The solution seldom has an elementary formula.

4, The solution is not likely to be a smooth function,

Formally, we can find an expression for the Fourier transform of ¢:(¢). Itis an infinite product
{Section 6.4). The inverse Fourier transform yields ¢ (r) as a “distribution” — not necessarily
continuous, possibly involving delta functions. (Those are impulses. Their integrals are jumps.
More cautious people call them steps.) In our Haar example, the solution ¢(#) lies just outside
the class of continuons functions — it has a jump.

For the coefficients 2A(0) = 1 and 2h(1) =1, the dllatlon equanon is

(1.28)

¢(2t) + ¢(2t - l)

The graph of (1) is compressed by 2 to give the graph of ¢(2r) When that is shifted to the
right by 1 3, it becomes the graph of ¢(2¢ — 1). We ask the two compressed graphs to combine
into the original graph. Figure 1.8 shows that this occurs when ¢(2) is the box function:

1 for0=<¢ <1
0 otherwise.

$(1) = l

1.5 Scaling Function and Wavelets 23

¢ ()

H(20) ¢ (2t-1)

TTIYTTTT YT YYYYRINYR

Figure 1.8: The box function with dilation and translation.

The graphs of ¢ (2¢) and ¢ (2t — 1) are half-size boxes. Their sum is the full-size box ¢(#).

As planned, we wrote down the solution rather than deriving it. The dilation equation is
linear, so any multiple of the box function is also a solution. It is convenient to normalize so that
the integral of $(1) from —00 to 00 equals one. Note that a solution ¢ (¢) covering unit area is
only possible when the coefficients in the dilation equation add up to 2.

Theorem 1.1 Iff d)dt =1 then 2h(0) + 2h(1) 4 - + 2R(N) = 2.

Proof: The graph of ¢(21) and every (21 — k) is compressed to area 3:

ol o]
2] ¢@t-kdt=| ¢du=1 (setu=2r—k). (1.29)
—00 -0
So integrating both sides of the dilation equation ¢(r) = 2} h(k)p(2r — k) gives 1 = A(0) +
k(1) + - - - + h(N). This is our lowpass filter convention.

Important. For the filter, then the filter bank, and finally the dilation equation, the normaliza-
tion is different. This is clear from the actual numbers in our lowpass filter. The sum of coeffi-
cients is 1 or v/2 or 2:

h: 1 and ! in the single filter, adding to 1
¢ % and == in the filter bank, adding to NG}
2h: 1 and 1 in the dilation equation, adding to 2.

The single lowpass filter has sum H (0} = 1. That preserves the zero frequency DC term: out-
put ¥ (0) = input X (0). The filter bank has a factor ~/2 o account for the downsampling step.
There are only half as many components and haif as many terms in the energy, when ¥im)*
is replaced by 3~ (y(2n))*. To compensate we must multiply y(2rn) by /2. That gives the nor-
malization C(0) = +/2 in place of H(0) = 1.

For the dilation equation, we have just seen why rescaling the time requires renormalizing
the coefficients by 2 — to preserve area.

There are certainly filters in which H (D) is not exactly 1. If H(w) stays very near 1 over an
interval around @ = 0, this still deserves the name “lowpass filter”. Such filters do not lead to

24 Chapter 1 Introduction

wavelets! The requirements for wavelets are very strict, at w = O and @ = . Only a subset of
special filters can pass the test, which starts with H(0) = 1 and H (m)y=0.

The box function is like the averaging filter — it smoothes the input. Convolution with the

box function gives a moving average in continuous time, just as the filter coefficients k = 33

did in discrete time:
_ () +x(~1) x(1) + x(0)
h*(...,x(O).x(l)....)_.(..., >)
]
PU)xx(t) = f X{s) ds = average over moving interval. (1.30)
=1

There is a similar convolution with w(r). Instead of picking up the smooth low frequency part
of the function, the wavelet will lead to the high-frequency details. The coefficients for the Haar
wavelet are | and —1.

The Wavelet Equation

The equation for the wavelet involves the highpass coefficients d(k). It is a direct equation that
gives w(t) immediately and explicitly from ¢ (r):

w(t) = JEZd(k)q&(zr —k). (1.31)
In terms of the original coefficients (k). the factor +/2 becomes 2:
Wavelet equation w(t) =2 hi(k) §(21 — k). (1.32)

In our example, ¢ (t) is a box function and its dilations @ (2t—k) are half-boxes. Then the wavelet
is & difference of half-boxes:

w(t) = @C2t) — d(2t — 1). (1.33)

Explicitly, w(r) = 1 for 0 < ¢ < § and w(z) = —1 for § < ¢ < 1. This is the Haar wavelet.
Its graph is in Figure 1.9 along with the graphs of w(2¢) and w(2¢ — 1). Those are wavelets at
scale 2¢; their graphs are compressed and shifted. They join the original w(), and all its other
dilations and translations, in the wavelet basis.

&

L wm w(2t)

w(2t-1)

F

L

EE TP

LT

LEELT LY I
-

Figure 1.9: The Haar wavelet w(¢); the rescaled wavelels w{2s) and w(2f — 1),

It goes without saying that Alfred Haar did not call his function a “waveler”. He was writing
in 1910 about this particular function; all other wavelets came later. That name emerged from

1.5 Scaling Function and Wavelsts 25

the literature on geophysics, by a route through France. The word onde led to ondelerte. In trans-
lation, the word wave led to wavelet. A wavelet is a small wave. In Haar’s case it happened to
be a square wave.

Comment. The square wave w(f) has compact support. It comes from an FIR filter, with finite
length. We use the word “support” for the closed interval in continuous time, here [0, 1], outside
which w(r) is zero. When we close the set where it is nonzero, to include the jump location t = 1
as well as the endpoints, we have found the support of the function w(¢). The words “compact
support” mean that this closed set is bounded. The wavelet is zero outside a bounded interval:
compact support corresponds to FIR.

Wavelets need not have compact support! They can come from IIR filters instead of FIR
filiers. Historically, since the connection of wavelets to filters was not immediately recognized,
the wavelets after Haar were constructed in other ways (with considerable difficulty). They os-
cillated above and below zero along the whole line 00 < ¢ < 00, decaying as |¢t| — oo. This
still qualifies as a wavelet. It is a localized pulse that decreases to zero and has integral zero.
Ingrid Daubechies showed in 1988 that compact support was possible for other wavelets than
Haar’s.

We will tell that story more completely in Chapter 6. From Haar onwards, one property that
most designers hoped for was orthogonality. This means: w(#) is orthogonal to all its dilations
and translations. The wavelet basis, containing all these functions w(2/¢ — k), is an orthogonal
basis. For the first few Haar wavelets that is easy to verify:

inner product = 2, wOwe) de = 0
innerproduct = % wOw-Ddt = 0
inner product = [w@Hw2r—1)dr = 0.

In the first integral, w(r} = ! in Figure 1.9 where w(2t) is positive and then negative. The
integral is zero. Similarly w(z) = —1 on the second half-interval where w(2¢ — 1) is plus and
minus. The second integral is therefore zero. The third integral vanishes for a different reason —
the functions w(2¢) and w(2¢ — 1) do not overlap. One is zero where the other is nonzero. So
the product w(2r) w(2r — 1) is zero everywhere.

The pattern continues for all translations by & and dilations by 2/, Haar wavelets at the same
scaling tevel (same j) do not overlap. They are orthogonal in the strictest way. When Haar
wavelets at different levels j and J do overlap, the coarse one is constant where the fine one
goes up and down. All integrals are zero, giving an orthogonal basis w () = w (2/¢ — k):

fe <]
inner product = f w2t ~k)w (2t - K)dr =0. (1.34)
-0

A perfect basis is not only orthogonal but orthonormal. The functions have length 1. Like a

unit vector, the inner product < w(t), w(r) > is normalized to 1;

o
length squared = f (w)Y dr=1.
-0

This is true for the Haar wavelet. To make it true for the dilations of that wavelet, we multiply
by 2//2 — otherwise the compressed graphs cover less area. The same factor will apply to other
wavelets, and we record it now:

26 Chapter 1 Introduction

Theorem 1.2 The rescaled Haar wavelets wj(t) = 2/7%w (27t — k) form an orthonormat
basis:
Le <]
f wp () wix () dt = 6(j — J) 6k ~ K). (1.35)
=00
This Kronecker delta symbol equals zero except when j = J and & = K. In that case the

integral of (w; x(2))? equals one. We need two indices j and k because there are two operations
(dilation and translation} in constructing the basis.

Important note, For these Haar wavelets, orthogonality was verified by direct integration. For
future wavelets, this integration is not desirable and not possible. We will not have elementary
formulas for ¢(¢) and w(r). Instead, we will know the coefficients ¢(k) in the dilation equation
and d(k) in the wavelet equation. All information about ¢(t) and w(t) — their support inter-
val, their orthogonality, their smoothness, and their vanishing moments — will be determined
by and from the c’s and d’s.

Second note. We have not said which space of functions has the wavelets w;;(¢) as a basis.
Actually there are many choices. The space starts with finite combinations g(t) = Y~ bpw ;1 (2).
Those functions are piecewise constant on binary intervals — length 1/2/ and endpoints m/2/.
Other functions f(¢) are in the space if they are limits of these piecewise constant g's:

Nf(#) — gn(1)]| = O for some sequence g,(¢).

The choice of function space is decided by the choice of the norm || f — g,(|. A function f(z)
might be a limit of piecewise constants in the maximum norm but not in an integral norm, or vice
versa. The most frequent choice is the L? norm, where the superscript 2 signals that we integrate
the square:

oo 12
1) — gl = ([oo dt) .
This choice of the L? norm is popular for four major reasons:
1. The norm is directly connected to the inner product:

By definition F@I? < f(t), f() >
By the Schwarz inequality ([f ()l g = | < f(), gt} > (.

2. Minimizing the L? norm leads to linear equations. This is familiar from ordinary least
squares problems. The word “squares” introduces the L? norm. When the functions g(£) are
restricted to a subspace, the closest one to f(¢) is g(f) = projection of f(t) onto the subspace.
Projection leads to right angles and linear equations.

3. The Fourier transform preserves the L2 norm and the inner product < f, g >. This is the
Parseval identity:

A2 = f fORd = f iF@Pdo= |7 (136)
<f.g>=f fHg®d: = f fT@do=<Ffg>. (137

1.5 Scaling Function and Wavelets 27

The reader will know that irrelevant but necessary factors of 27 should enter these equations.
They depend on how we define the Fourier transforms. Since f(w) and Z(w) can be complex, we
introduced absolute values in (1.36) and complex conjugates in {1.37). Of course (1.37) becomes
(1.36)if g(1) = f(1).

4. For an orthonormal basis (like the Haar wavelet basis), the L? norm ||Z bjw J,-,;(n‘)"2
equals the sum of squares of the coefficients bj;:

[(Zbﬂt wj())” dt DY bubsk fwﬂc(t) wyx (£) dt
= 2"

For all these reasons, and more, the L2 norm is our choice. But we must mention that wave-
lets provide an unusually convenient basis for other norms and other function spaces. This makes
them popular in functional analysis and harmonic analysis, which deal with the properties of
functions. If we change the exponent from 2 to p, the space LP contains all functions for which
(f |f(t)|")”p is finite. This norm || f1|,, is not quite equal to C (3_ |b}‘k|p)1;p, as it was for
p = 2. But if the b;; are wavelet coefficients, rather than Fourier coefficients, this sum lies be-
tween fixed bounds A, || /||, and B, (R P Thus the absolute values |b ;| still indicate which
functions have finite norm and belong to L7,

In shorthand: The wavelets are an knconditional basis for L? (no condition on the signs of
the b;). The complex exponentials are conditional; phase information is needed on the bj.

i

We recognize that these last comments are “pure mathematics”. The reader is invited to start
learning that language too — if desired and not already achieved. It is rewarding and not difficult.
The wavelet transform that connects f(¢) to its wavelet coefficients b;; is absolutely central —
to theory and also to applications.

We turn to the practical problem: How to compute the coefficients b quickly? This has a
very good answer for wavelet transforms. There is a recursive Fast Wavelet Transform compa-
rable in speed and stability to the FFT for Fourier transforms.

Problem Set 1.5
1. If w(?) has unit norm, so that [(w(#))*dt = 1, show that the function w () = 2/2w(2/1—k)
also has unit norm.

2. What combination of the half-boxes ¢(2¢) and $(2¢ — 1) is closest in L? (least squares) to
fiy=rfor0 =t <1?

3, The box function ¢,(7), shifted to the interval [3, 4], is what combination of the functions
(2t — k)?

4. Show that the convolation of the box function with a continuous-time signal is the continuous
average in (1.30). The convolution formula is

() = x () =f Pt = sy x(s)ds.

£. Given a combination g (2¢) + a (2t — 1), express it as Apd(t} + Bpw(r). Then invert to
find ap and a; from Ag and Bp.

6. What scaling function satisfies the three-scale equation ¢ (1) = ¢ (31} +¢ (31 — 1)+ (31 =2)?
Find two wavelets that are combinations of ¢ (3¢ — k), orthogonal to ¢{(¢) and to each other.

28 Chapter 1 Introduction

1.6 Wavelet Transforms by Multiresolution

The wavelet transform operates in continuous time (on functions) and in discrete time {on vec-
tors). The inputis £(¢) or x(n). The output is the set of coefficients & j&» which express the input
in the wavelet basis. For functions and infinite signals, this basis is necessarily infinite. For finite
length vectors with L components, there will be L basis vectors and L coefficients. The discrete
wavelet transform, from L components of the signal to L wavelet coefficients, is expressed by
an L by L matrix.

To begin, we derive formulas for the coefficients & j&- In continuous time they involve inte-
grals of f(¢) times w (¢). In discrete time we are solving a linear system. The inverse transform
involves the inverse matrix,

Then we show how the b can be found recursively. Levels Jand j —1 are connected. This
reorganizes the matrix multiplication. The discrete wavelet transform (DWT) becomes the fast
wavelet transform (FWT). The central idea in this fast recursion is multiresolution.

First come the two directions, synthesis and analysis, for an orthonormal basis:

Synthesis of a function: f(1) = > b wir(¥)

it (1.38)
Analysis of a function: b = f frw () de.
=0

In the matrix case, the wavelets are ordinary vectors. They go into the columns of the wavelet
mairix S. To maintain the parallel with the continuous case, we use a double index Jk for the
column number. A single index would go from 1 to L, but the double index is more natural.
Each wavelet vector has a position in time given by and a position in frequency (better to say,
in scale) given by j. The columns of the L by L mattix S are the discrete wavelets:

Synthesis in discrete time: x = Sb.
The rows of the L by L matrix A contain the “analyzing” wavelets:
Analysis in discrete time: » = Ax.

For Haar and ali orthonormal wavelets, the columns of S are the same as the rows of A. Analysis
and synthesis are related by A = S7. In general they are related by A = §~!.

The synthesis equation x = Sb multiplies each coefficient b4 by the basis vector in column
Jjk of S, and adds. This is just matrix multiplication: $b is a combination of the columns of S,

The analysis equation Ax = ASb = b is completely parallel to the continuous formula
f w;z(8) f () dt = bj;. The left side is the inner product of x with each analyzing vector, The
wavelet basis consists of unit vectors, 5o all formulas are simple. The basis is orthonormal. In
the continuous case, f (w;x())’ dt = 1. In the discrete case STS = I. Then b — $7x and no
division by length squared is required.

Analysis is the inverse of synthesis. Why did we multiply by the transpose matrix, when we
should have introduced the inverse matrix? For an orthonormal basis, the reason is fundamental-
The inverse is the same as the transpose!

Orthonormal columns: $7S = J means §~' = §7.,

When the basis is only orthogonal, and not normalized to unit vectors, 7§ is diagonal. By using
the word basis, we ensured that all these matrices are square. In the rectangular case § would

1.6 Wavelet Transforms by Multiresolution 29

not have an inverse. There are too many columns to be independent; instead of a basis we have
aframe (Section 2.6). Our formulas would give the “pseudoinverse” $* instead of S~
Without orthogonality, the rows of A = $~' are biorthogonal to the columns of S

(row i of A) - (columin j of §) = &(i — j).

Each row of $' is orthogonal to L — 1 columns of S. This is biorthogonality. The columns of
§ are the synthesis basis, and the rows of A = §~' are the analysis basis.

Tree-Structured Fllter Bank

We move from transforms toward fast transforms. The wavelet basis and the Fourier basis have
special properties, beyond orthogonality. The scales j and j — 1 are closely related, just as the
frequencies w and w/2 are closely related. By taking advantage of these relations, the multipli-
cations by S and S7 can be reorganized. We will explain the special properties, and then derive
fast transforms (starting in this section with Haar wavelets).

In the Fourier case, the matrices become F and F7 — or actually ?T. since the Fourier vec-
tors are complex exponentials. These are the L-point DFT matrix and its inverse. The Fast
Fourier Transform is summarized in Section 8.1 (on periodic problems). You will see that the
FWT s asymptotically faster than the FFT, requiring only O(L) steps instead of O(L In L). (The
Walsh basis, which is not local, brings back L In L. The components are £1, with no zeros.) All
these transforms are so important and successful that we do not overemphasize the comparison.
Our goal is to understand wavelets and Fourier both.

The recursive nature of wavelets is clearest when we construct a tree of filter banks (Figure
1.10). The highpass filter D computes differences of the input. The downsampling step symbol-
1zed by (] 2) keeps the even-numbered differences (x(2k) — x(2k — 1)) /+/2. These are final
outputs because they are not transformed again. They are at the end of their branch, in this “log-
arithmic tree”. These outputs b, are at the fine-mesh level. The factor » = 1/+/2 is included to
produce unit vectors in the matrix S, below.

ey
e =
{D_lz l

Figure 1.10: The logarithmic tree that leads to wavelets.

bj-l.k

The lowpass filter C computes averages. Again the (| 2) step keeps the even samples. These
averages are not final outputs, because they will be filtered again by D and €. The averages and
differences of all levels follow the fundamental recursion:

Averages (lowpass filter) aj_1% = JLE (a,-‘u + a,-_g;H.l)

' Diﬁ'erences (kighpassﬁlter) bj_]_t = ﬁ (a,-‘u - aj_2.|;+]) . (139)

30 Chapter 1 Introduction

These filtets are anticausal, There is a time-reversal here. That requirement is built in to
convolutions and inner products. We will discuss it again below, for functions in continous time.
The essential thing is to see filters with downsampling in equation (1.39). Each step takes us from
a finer level j to a coarser level j — 1, with half as many outputs.

You can see this logarithmic tree as a pyramid of averages and differences. The averages
are sent up the pyramid, to be averaged again (and also differenced). Whenever a difference is
computed, it is final. The sum of % + % + % + ... gives 1, representing 100% of the output in
the limit.

Figure 1.11 shows a finite pyramid. The input vector x at the bottom has length L = 271t
is at level J, where we find 277 differences and averages. The averages are the inputs at the
next level J — 1. Eventually we reach level 0 with an overall average and an overall difference
(second half average — first half average). Keep this overall average as the final component—
you might say the zeroth component— of the wavelet transform. Starting at level J = 3, where
the input x has L = 2/ = 8 components, the count of wavelet coefficients is

4 differences + 2 differences + 1 difference 4 overall average = 8.

The seven differences are wavelet coefficients b;. The overall average can be denoted for
convenience by ago. In the model case of infinite length, the iteration of the lowpass filter can
go on forever.

Figure 1.11: Averages a;; go up the pyramid. Differences b, stop.

You must see the finite case in terms of matrices. With length L = 4, there are two fine dif-
ferences, one coarse difference, and the overall average. The columns of § are the basis vectors
for the Haar wavelets:

1 1 1 0 22 r 0
1 1 -1 0. 1 r2 2 -+ 0
1 -1 o0 1 1sscaledbyr—-—ﬁtos— 22 o (1.40)
1 -t 0 -1 2 -2 0 —r

The scaling gives unit vectors in the columns and rows, because 2r> = 1 and 4r* = 1. The
inverse matrix appears in analysis, as we create the tree of averages and differences:

1.6 Wavelet Transforms by Multiresolution]|

L8

-r

A=5"'=§= (1.41)

)) r —r

The first row gives the overall average ago. The second row gives bgo. The third and fourth rows
give the finer differences, coming earlier in the tree of filters. The transform & = Ax contains
these four numbers.

Fast Wavelet Transform (FWT)

The tree of filters is the fast wavelet transform!! The FWT expresses the analysis matrix A as a
product of simple average-difference matrices, coming from the downsampled filters in the tree:

A= (1.42)

The matrix on the right is first in the tree, The coefficients r, r are in the lowpass filter, and
downsampling leaves a matrix L in the top two rows. The rows of L have a double shifi. The
coefficients ¥, —+ come from the highpass (or bandpass) filter, downsampled to leave B. There
is again a time-reversal from —rv,r. The pattern that you see in the 4 by 4 Haar matrix is the

product in (1.42):
: £ L
Analysis tree: A = _~_I_ [B] .

This pattern applies to transforms of all lengths L = 27. Ir will apply to all wavelets! The fast
transform expresses A (and later) using matrices with many zeros. It is the matrix form of the
pyramid algorithm.

For length L = 2, there will be J levels in the tree and J matrices in A. The matrix on the
right, from the start of the tree, has two nonzeros in each row. Filters with T coefficients will
produce T nonzercs in each row. Then the finest factor has TL nonzero entries.

The next factor has T L /2 coefficients in the top half, processing a shorter input. (The identity
matrix in the lower right costs nothing. It leaves the differences alone.) The third stage of the
tree has T L /4 coefficients. The total for the fast wavelet transform (= factored form of w-h
comes from J factors:

TL(1+%+%+---+-21,1:T)<2TL. (1.43)
Theorem 1.3 The fast wavelet transform computes the L coefficients b = Ax in less than
2 TL multiplications.

The same count applies to the synthesis stepx = Sb. The factors of § give the inverse of equation
(1.42). The synthesis tree has the inverse matrices in opposite order:

=17 . (1.44)

- ¥ Chapter 1 Intreduction

The matrix on the right inverts the last analysis filter (still with time-reversal). It is the first step
in the synthesis tree. The product of J matrices is the whole synthesis bank, which reconstructs
x in Figure 1.12.

B BT

Figure 1.12: Analysis bank followed by synthesis bank: SAx = x. The matrices are factored
by the tree, producing the FWT,

Haar Wavelets and Recursion

We move now to continuous time. The input f(z) is a function instead of a vector. The cutput
is the set of coefficients &;; that multiply the wavelet basis functions w (). These coefficients
are inner products of f(¢) with w (). The basis functions are normalized to unit length by the
factor 27/2:

bix =< fiwy >= fm FOP?w (2 —k) ar. (1.45)

For Haar, the wavelets are piecewise constant. The original wavelet w(f) = wgo(r) is +1 on
the interval [0, §) and —1 on the interval (1, 1). The basis function w & 15 29/2 on a subinterval
of length 327/ and —2//2 on the next subinterval. There are four wavelets at level Jj =2, when
we start on the unit interval [0, 1), There are 24 wavelets at level i

To compute all the inner product integrals atlevels j = 0, j = 1, and J =2, wecan integrate
J(¥) over all eight subintervals of length %— This gives eight numbers. How do those numbers
produce by and by and byy and agy?

The answer is beautiful, Those eight numbers are exactly the level 3 averages asg, asr, aas,
..., @i37. We act on them exactly as in discrete time: filter and downsample! The numbers at
level j — 1 come directly from the numbers at leve! j. This is because the functions at level Jj—1
come from the functions at level j. The box function is a sum of half-boxes and the wavelet is
a difference of half-boxes:

1
Py =920 + ¢ 2t — 1) gives ¢ 1.4(D) = —= [$;2(8) + ;2041 ()] (1.46)
V2

. 1
w(t) = ¢(2t) ~ ¢(2 — 1) gives wj_y4(f) = 7 [j20) - bj2un@)]. (1.47)
Please look at these equations. They are the dilation equation and wavelet equation. The
scaling function ¢ ;4 (#) = 2//2 $(2/¢ — k) is constant on the interval of length 2=/ starting at t =
k277, When we take its inner product with f(t), we are integrating () over this subinterval.
Multiply the two equations by f(¢) and integrate:

1.6 Wavelet Transforms by Multiresolution 33

Scaling coefficient: a;_j} = 7';(&1;_3* + a;241)

(1.48)

Wavelet coefficient: b;_y; = %(a 2k — Gj2%41)-
The coefficients follow the pyramid algorithm. Notice again the time-reversal in which 2k + 1
appears. Our coefficients aj = < f, ¢u (1) > and by, = < f, wi (f) > are inner products, and
a filter (a convolution }_ (k) x(n — k)) has this reversal.

The main point is the pyramid. This beautiful connection between wavelets and filter banks
was discovered by Stéphane Mallat. The pyramid algorithm is also called the Mallat algorithm
(don’t pronounce the °C’). It is a tree of butterflies in the Preface, it is a tree of filters in Figure
1.11, and a third form of the tree shows the trunk of averages a ;; and the branches of differences
b ke

alk a'Ol(

\ b \ \
j-lk b 1k b Ok

Wavelet coefficients at level j + 1 are differences of scaling coefficients at level j.

This pyramid is also an equality of functions. A function at fine resolution j is equal to a
combination of “‘average plus detail” at coarse resolution j — 1:

Yoapda® =) a1k ¢4+ Dbtk wiide). (1.49)
k k k

Multiresolution in Continuous Time

The equality of functions in (1.49) is also an equality of fitnction spaces. On the left side is a
combination of ¢’s at level j. Let V; denote the space of all such combinations. On the right
side is a combination of ¢’s at level § — 1. This is a function in the scaling space V;_1. Alsoon
the right is a combination of w’s at level j — 1. This is a function in the wavelet space W;_y.
The key statement of multiresolutionis

(1.50)

The symbol + for vector spaces means that every function in V; is a sum of functions in Vi
and W;_y, as in equation (1.49). The symbol & for “direct sum™ means that those smaller spaces
meet only in the zero function. This is guaranteed when the two subspaces are orthogonal. Tn
that case the direct sum & becomes an “orthogonal sum”™. For emphasis we restate the definition
of the subspaces:

Vioi @ W;_y

V; = all combinations E ajid;(t) of scaling functions at level j
%
W; = all combinations Zb;kw,-k(r) of wavelets at level j.
X
V; is spanned by translates of ¢ (2/7) and W; is spanned by translates of w (2/¢). The time scale

is 27/, At each level, all inner products are zero. We have two orthogonal bases for V;, either
the ¢°s at level j or the ¢’s and w’s at level j — 1.

34 Chapter 1 Introduction

Notice how this multiresolution grows to three levels or more:

W=V,egW,=VioWaeaW,=VieWo W, dW,. (L.51)

On the left side are all piecewise constant functions on intervals of length %. On the right side
is the same space of functions, differently expressed. The functions in V; are constant on [0, 1).
The functions in Wy, Wy, W, are combinations of wavelets. The function f(#) in V3 has a piece
Ji(t) in each wavelet subspace W; (plus Vg}:

FO =" andoe(®) + D boxwoe(t) + Y buwie(t) + 3 buewn (). (152)
k k & k

Note to the reader. The parallels between a filter tree in discrete time and multiresolution in

continuous time are almost perfect. The filter bank separates lower and lower frequencies, as

we iterate. Multiresolution uses longer and longer wavelets, as we climb the pyramid. We are

speaking of the analysis half, where inputs are separated by scale.

Discrete time

filter bank tree
downsampling @ — ¢
lowpass filter
highpass filter
orthogonal matrices
analysis bank output
synthesis bank output

product of filter matrices

Continuous time

multiresolution
rescaling t — 2¢
averaging with ¢{z)
detailing with w(z)
orthogonal bases
wavelet coefficients
sum of wavelet series

fast wavelet transform

The reader will understand that in writing about Haar wavelets, we are writing about all wave-
lets. The pattern is fundamental, the pieces in the pattern can change. The acmal (k) and d(k)
and ¢(¢) and w(¢) are at our disposal. The next chapters move to filter design, where we make
choices. Those choices determine the wavelet design. Some filters and wavelets are better than
others. We will not allow ourselves to forget the pattern that makes all of them succeed.

Caution. The Haar wavelets are orthogonal. Thus they are biorthogonal to themselves. We
are not seeing a clear difference between analysis and synthesis filters, C and P versus F and G.
For the same reason we are not seeing the dual functions :5 () and 1>(2). A clue to this shadow
world (or tilde world) is in the time-reversals, which involve the next sample 2k +- 1 instead of
the previous sample 2k — 1. This suggests filters C* and D7 rather than C and D.

The biorthogonal case comes in Section 6.5. It has fwe multiresolutions, i’vj“ = i’t,- <] ﬁ;j
in parallel with V;) = V; @ W;. The pyramid and the fast wavelet transform go one way in
analysis (with tilde). The inverse transform goes the other way in synthesis (without tilde).

Problem Set 1.6

1. (a) Show that the exact sum in equation {1.43)is 27 (N — 1).

(b) How many maltches are needed to decide the winner in a knockout toumament with ¥
players? The average is the winner that goes to the next round (next filter), The differ-
ence is the loser that stops.

1.6 Wavelet Transforms by Multiresolution

2. Write out the factorization of Haar’s A for N = 8 (following 1.42).
3. For N = 8, write out the factorization of § corresponding to (1.44),

4. Draw the synthesis tree, the reverse of Mallat's analysis tree. A similar pyramid algorithm was
proposed by Burt and Adelson before wavelets were named.

5. Split the function f(f) into a scaling function plus a wavelet.

3

5 f(t) 5 ()

6. Split the function g(¢) into its pieces in V,, Wy, and W, (box plus up-down coarse wavelet plus
two fine wavelets).

7. The function g(¢) is in V; (its scale is {). The pytamid splits it first into a function in V) (two
half-size boxes) plus a function in W, (two half-size wavelets). Find those pieces. Then split
the piece in V| into a full-size box plus a full-size wavelet.

8. These three pieces are in V and Wy and W\. Synthesize f(z} in ¥, from the first two pieces.
Then add the details in the third piece to synthesize f2(r} in V5.

4

2 2 —— 2 —

9. Suppose H (¢ — }) is the unit siep function with jump at 7 = 3. Its inner products aj, with the
boxes ¢;,(¢) will be nonzero for about two-thirds of the 2/ boxes on [0, 1]. How many inner
products bj; with the wavelets w (£} will be nonzero?

This example shows the compression of step functions by Haar wavelets.

35

