Chapter 10

Design Methods

10.1 Distortions in Image Compression

One of the most successful applications of the wavelet transform is transform-based image com-
pression (also called image coding). The coder in Figure 10.1 operates by transforming the data
to remove redundancy, then quantizing the transform coefficients (a lossy step), and finally en-
tropy coding the quantized output. Because of superior energy compaction and correspondence
with the human visual system, wavelet compression has produced good results. Since the wave-
let basis functions have short support for high frequencies and long support for low frequencies,
large smooth areas of an image may be represented with very few bits. High frequency detail is
added where it is needed.
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Figure 10.1: Transform-based image coder.

Figure 10.2 shows the original image and its decomposition (three levels) using the two-
channel biorthogonal filter bank with (9, 7) coefficients. The upper left block is a smoothed
approximation of the original image; it comes from three iterations of the lowpass filter with
downsampling. The other subbands contain details at various scales. Since the filters have four
vanishing moments, the signal energy in those subbands is small. Consequently, they have to be
amplified in order to see the details,

The ten subimages are processed by a spectrum estimator for bit allocation. The statistical
properties of the subimages guide this quantization step. The lowpass subband (upper left) is
allocated the most bits, One strategy is based on the rate distortion curve. Given B bits, how
does one allocate by bits per pixel to the kth subimage such that the reconstructed image has
smallest distortion? Important distortion measures are mean-square-error (MSE), peak signal-
to-noise (PSNR), and maximum error.

At high and medijum bit rate (low and medium compression ratio), there is a strong corre-
lation between the image quality and these objective measures. A good compression algorithm
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Figure 10.2: Original image “Lenna” and its multiresolution decomposition. The filter bank used
is the (9, T)-tap linear-phase filter bank.

would reconstruct the image with low MSE, high PSNR, and low Max error. At low bit rate
(high compression), the basis function characteristics have profound effects on the guality of
the reconstructed image. Typical distortions are ringing, blocking, and blurring artifacts.

Figure 10.3 shows the reconstructions for compression ratios of 32:1 (0.25 bits per pixel)
and 64 :1 (0.125 bpp) and 100:1 (0.08 bpp). The objective measures for 32 :1 cormpression are
MSE = 37.32, PSNR =32.41 dB, Max error = 62.66. For 64 :1 compression the error is larger:
MSE =61.36, PSNR = 30.25 dB, Max error = 68.67; and for 100:1 compression MSE = 104.3,
PSNR =27.95 dB, Max error = 121.3,

For medium bit rate (0.25 bpp), the objective measures are good indicators of the subjective
quality of the image. At low bit rate, this is not always the case! There are many artifacts in the
reconstructed image at 0.08 bpp. The choice of filters is important, as well as bit allocation.

Recenstirucied [mage at 0.25 bpp Reconstructed Image s10.125 bpp Reconsinycled Image a1 0.08 bpp

Figure 10.3: Reconstructed images for 32:1, 641, and 100:1 compression with (5, 7) filters.

With four levels and 13 subbands, there are several artifacts in the reconstructed images:
blurring, border distortions, blocking, checkerboarding, and ringing. Each artifact will be elab-
orated below. They are the results of the filter choices, the bit allocation algorithms, and the
convolutions.
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Blurring Artifacts

Blurring occurs when the algorithm does not assign enough bits to the higher subbands 5 to 13.
In the extreme case, we allocate all bits to subbands 1 to 4 and none to subbands 5 to 13. The
compression ratio is 48 to 1 (0.167 bpp). Figure 10.4 shows that the reconstructed image is es-
sentiaily an interpolated version of subband 1. It suffers from blurring.

The blurring will decrease if one allocates more bits to the higher subbands. Figure 10.4(b)
shows the reconstructed image when the bit allocations are

929 563 652 496 338 420 281 097 1.73 023 000 000 0.00

The resulting compression is also 48 to 1. This image is much sharper.

Figure 10.4: Blurring in image compression: Too few bits for the detailed subbands.

Border Distortions

The image and the filters have finite length. One has to be careful in computing their convolution.
Border distortion is the result of choosing the wrong extension. Chapter 8 discusses the filtering
operations for finite-length signals by zero-padding of the input signals, circular convolution,



340 Chapter 10 Design Methods

and symmetric extension. In image cormpression at 32 to 1 (0.25 bpp), with the (9, 7) symmetric
filters, we can compare the effects of these three extensions.

Original Zero - Padding
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Circutar Convolution Symmetric Extension

Figure 10.5 Zero-Padding Circular Convolution | Symmetric Extens}on
MSE 278.40 96.10 88.67
PSNR (dB) 23.68 28.30 2875
Max Error 168.40 54.43 55.26

The zero-padding method assumes that images are zero outside their borders. Therefore they
are discontinuous signals. The pixe! intensity at the reconstructed border is very low (dark). The
large error of zero-padding occurs at the boundary.

Circular convolution assumes that the image is periodic. This assumption is not valid for
our original image. If the subband images are not quantized, the reconstructed image has no
distortion since the filter bank is a PR system. But quantization yields errors at the border when
using circular convolution. The periodic assumption results in a discontinuous intensity level at
the border,

Symmetric extension extends the images ini a continuous way at the border. Although the
objective performance of circular convolution is close, the subjective (perceptual) quality from
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circular convolution is not as good as from symmetric extension.

Blocking Artifacts

One major disadvantage of the DCT in image coding is that it cannot be used for high compres-
sion because of its blocking artifacts. The basis functions typically have short length M = 8
for the DCT block transform with no overlap. Blocking will show up at the output. One way
to improve is to use longer basis functions, which overlap neighboring blocks. Figure 10.5 also
shows the reconstructed image using GenLOT (length 48). Most of the blocking artifacts are
now unnoticeable.

DCT at 0.25 bpp Gen LOT at 0.25bpp

Figure 10.5: Blocking artifacts in image compression using DCT and lapped transforms,

High Frequency Distortion: Ringing

The reconstructed image is a linear combination of the scaling function and wavelets of the syn-
thesis bank. Since symmetric filters are not orthogonal, the analysis and synthesis functions
are not the same. The scaling function of the synthesis filter should be smooth and the wave-
let should be short. The error is larger at higher subbands, assigning fewer bits to the wavelet
coefficients. When the wavelet has length N, the error at the pixel (K, L) affects its neighbors
(K+k,LE2)y, wherek, £ < N/2

Figure 10.6 shows the original image and reconstructed image at (.5 bpp. The lengths of the
synthesis filters are 11 and 17. Even at medium bit rate, the ringing effect is quite severe. This
is especially true at strong edges.

Nonsmooth Functions: Checkerboard Artifacts

In all these compression examples, the filters are linear-phase factors of a maximally-flat half-
band filter. All scaling functions and wavelets in the synthesis bank are smooth, which is essen-
tial for image reconstruction. When the functions are not smooth, what is the effect on recon-
struction?
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Original Reconstructed -- 0.5 BPP

Figure 10.6: Ringing antifacts are clearly visible at edges.

The lowpass responses Hy(z) and Fy(z) in Figure 10.7 are designed such that the stopband
error is equiripple (a desirable property in conventional digital signal processing). The scaling
Junctions are not smooth. The reconstructed image suffers from the the checkerboard effect.
This can be explained by observing that the scaling function from Fp(z) has a large and nar-
row peak. The magnitudes near this narrow peak are about 10% below it. This explains the
bright horizontal and vertical lines in the reconstructed image. The stronger intensity produces
the checkerboard effect. This artifact can be attributed to the “rou ghness” of ¢ (£).

Lowpass synthesis:  Long and smooth to avoid blocking and checkerboarding
Highpass synthesis:  Short to avoid ringing
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Figure 10.7: These lowpass equiripple filters are linear-phase factors of a halfband equiripple
filter. The lengths are 9/7 and the rate is 0.25 bpp. ‘The nonsmooth scaling functions create a
checkerboard.
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10.2 Design Methods — General Perspective

In all of our examples, one important factor for image quality is the choice of coefficients in the
filter banks. For an objective function of coding gain or degree of smoothness or stopband atten-
uation, one optimizes the filter coefficients. This section will present several methods to design
and optimize filter banks and wavelets. These methods are based on spectral factorizations, lat-
tice structures and time-domain formulations. We will present several common choices for the
objective function P, and its parameters, and the constraints to impose:

Design Problem: Minimize & (parameters) subject to constraints. (10.1)

The design parameters could be the lattice coefficients or the filter coefficients. Recall how
a lattice structure can impose the PR property and also linear phase, pairwise-mirror-image or
cosine modulation. The lattice structure of a two-channel paraunitary filter bank includes R, =
rotation by 8. There is a one-to-one correspondence between lattice coefficients 6, 6y, ..., Oy
and filter coefficients. The advantage of the lattice coefficients is that the quantized filters are
still PR. The rotations are still orthogonal when the angles are rounded off.
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Objective Function &

Useful objective functions are the stopband attenuation, coding gain, and degree of smoothness.
Stopband attenuation is very important in audio compression, whereas coding gain and smooth-
ness are More important in image compression.

Stopband Attenuation: ® measures the passband and stopband errors of H(z):

f W(e/) |Ha(e/) — H(e’*)|* dw, L, norm (energy)
= Q

¢ (10.2)

Max [W(e/®) |Hy(e??) — H(e/*)|], Lo norm (maximum).

The frequency region €2 consists of the passband 0 < @ < w, and stopband @y < @ < =:.
H,(2/*) is the desired response of the lowpass filter. W{e/®) is a positive weighting function.
Examples of typical Hy(e/®) and W (¢/?) are:

g—jLw‘

Hy(e!®) = I 0

0<w=sw

joy _ | 8 0=2w=wp
o <w<T W(e ).-{ (10.3)

b, w, Zw=m.
If one increases the ratio b/a, the stopband error &; is much smaller than the passband error &,.
In a filter bank with M channels, ¢ has a term from each filter H;(e/®). The bandpass filters
have two stopbands enclosing one passband.

The analysis filters in a paraunitary bank satisfy 3_ | Hi(¢/“)|? = 1. Consequently, it is suf-
ficient to consider only the stopbands. With three filters, the figure shows § < & < 2—;’- asa
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stopband of Ho and H, and as the passband of H,. In its passband, H, (¢7°) must approximate

unity. The passband emor 8,y = 1 — /1 — 82, — 82, is very small, if both stopband errors &,
and §;; are small. Filter banks with high stopband attenuation are essential in audio COMmpression
and signal detection,
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Example 10.1. Consider the design of a linear-phase filter bank with (9, 7) taps based on max-
imum error in the stopband. Figure 10.8(a) shows the equiripple stopband responses of Hy(z)
and Fo(z). They are the factors of an equiripple halfband filter of length 15. There is no zero at
@ = 7 and the scaling function and wavelets are rot smooth, This pair of filters was used earlier
to demonstrate checkerboard artifacts in image compression.

Figure 10.8(b) shows the frequency responses of a 9/7 maximally-flat haifband filter. The
stopband attenuation of both filters is bad. However, each filter has four zeros at @ = 7. The
scaling functions and wavelets are very smooth. They are the filters used in the FBI fingerprint
image compression standard,

Hx) Foiz) : Gz} Fotn
P . ] !
" N '
' s  Ew s
** - LI ™
- 1
* '
i“ i ' i i
o] y =P ¥
OO 1 or 83 e u: O ] O )
Homaized F ey L ] H Hofmaicad Fraguency Matrmkred Fraguancy
oalng Funcaon HO(r] Staling Fuopmskon irow F 1) 1 Seatirn Pl o H i) Zealing Pencticn o P )
] »
- Soaling M o bt o) o [ - 3
" L 1 (13
Voo ]
o b [] o
a o L) a L3l
- L] ] -
[ R
N | . ] * —— .
.
1
- - ] v i
L) - ] [} T E - ] O [] ] L ]

Figure 10.8: Example of equiripple design (left) and maximally-flat design (right).

Example 10.2. Figure 10.9 shows the filter responses of a cosine-modulated filter bank (8 chan-
nels, filter lengths 128). The objective function is f a’; | H(e/*)|2 dew, the stopband energy of the
prototype filter.

Coding Gain: A uniform quantizer has an equivalent noise model. The input signal x(n)
is quantized to b bits to obtain v(n). For large b, one can assume that the quantization error
9(n) = v(n) — x(n) is a random variable, uniformly distributed in —2* < ¢ < 2°. The error
variance of g¢(n) is %2'2"’.
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Figure 10.9: A cosine-modulated filter bank with stopband attenuation as objective &,

Instead of quantizing the input directly, one can transform it into another domain. The input
signal is blocked into length N and transformed to length M by P7. The subband signal y, (n)
is then quantized to produce ¥, (n). The transform should be designed so that the energy of x is
concentrated in the first few coefficients of y,. The number of bits in the quantizers @, should
be proportional to the energy of y,(n).
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The coding gain measures the energy compaction from the transform. An orthogonal trans-
form with high coding gain yields reconstructed images with high quality at low bitrate. Chapter
11 will discuss coding gain in more detail. For biorthogonal systems, [Katto-Yasuda) derived
a unified formula when the input signal x(n) is modeled as a Markov process. Its inter-sample
correlation factor is p. The coding gain is G when the sampling ratios are o

M=1
- o Ay = ), 3 (n) hi(m) o
G(p) = !:!} (ApBy) where [ B = S Um

For example, a 3-level wavelet transform has four analysis filters:
Ho(@ Ho@)Ho(z*)  Ho()Ho(HHi1(ZY)  Ho(VHi(D) Hi(@). (10.4)

The coefficients in these combinations are used in the formula for coding gain. Assuming
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p = 0.95, one can compute G and improve the performance. The sampling ratios are 1/8, 1/8,
1/4 and 1/2.

Example 10.3. Figure 10.10 shows the frequency responses of an 8-channel GenLOT with
length 48, for maximum stopband attenuation and also for maximum coding gain, Note that the
responses are different. These GenLOTs are compared at 50 : | compression. The objective
performances with high stopband attenuation are MSE = 135, PSNR = 26.84 dB and Maximum
error = 96. The cormresponding numbers for the GenLOT with high coding gain are 130, 26.99
dB and 84. Even though these are comparable, maximizing the attenuation produced blocking
artifact. This is not due to the block length 48, but it is due to the DC leakage, The bandpass and
highpass filter responses are not zero at w = 0, so the DC term has leaked out of the lowpass.
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Figure 10.10: GenLOT designs optimized for stopband aitenuation (left) and coding gain (right).

Constraints

PR constraints:  The equivalent conditions for M-channel perfect reconstruction are

b0 f(2m — n) = 8(m)6(k ~ ¢)
Fole) Hy(2) = 21, (10.5)
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How does one design Hi(z) and Fi(z) that satisfy (10.5)? One way is to design A, (n) first and
then solve for f,.(n). For arbitrary analysis filters, synthesis filters might not exist. The time
domain approach in [Nayebil] presents an iterative method to solve for b (n) and f, (n).

For FIR filters, (10.5) is true only if the determinant of H,(z) is a delay. The special case
of paraunitary H,(z) can be parametrized by a set of rotation angles or Householder matrices.
This is the lattice structure. The PR constraints are automaticaily satisfied,

For two channels, a simple PR condition exists for FIR systems: Hy(z) Fy(z) is a halfband
filter. This is the result when aliasing is cancelled. Such simplicity does not exist for systems
with more channels,

Smoothness constraints:  From the image compression examples, it is clear that the synthesis
functions should be smooth. This relates directly to the number p of zeros at @ = 7 of Fo(z).
The smoothness property is also known as the DC-leakage property in traditional image process-

ing.

Example 10.4. The lowpass Daubechies orthogonal filter Hy(z) is the minimum-phase spectral
factor of a maximally-flat halfband filter P(z). Since P(z) has 2p zeros at w = x, Hy{z) and
Fo(z) have p zeros. Note that the functions in Figure 10.11 of D,y are considerably smoother
than Dy, since D4 has 12 zeros at w = 7.
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Figure 10.11: Magnitude response, scaling function and Daubechies wavelets Dy and Do,.

10.3 Design of Perfect Reconstruction Filter Banks

The three main design methods extend in different ways to M channels:

Spectral factorization factor an M-th band filter
Lattice structure method  minimize ® (lattice coefficients)
Time-domain method minimize ¢ (filter coefficients) subject to PR,

The first approach uses spectral factorization. We find roots or factors Fy(z) Ho(z) of alinear-
phase polynomial P(z). For applications that require large stopband attenuation, P (z) has many
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zeros on or near the unit circle. Its factorization becomes difficult. A special class that is very
useful in function approximation is the halfband maxflat Daubechies filter {Section 5.5), One
can distribute its zeros in several ways to Ho(z) and Fy(z) to obfain:

Paraunitary filter banks =-—  Orthogonal Daubechies wavelets
Type A linear phase filter banks ——  Symmetric even-length wavelets (10.6)
Type B linear phase filter banks ——  Symmetric odd-length wavelets.

These wavelets have excellent approximation from the zeros at w = .

The second approach is based on the lattice structure implementation of the filter bank. The
unknown parameters are the lattice coefficients k;. Since all PR filter banks are characterized by
an appropriate set of k;, the design problem reduces to minimizing the objective function ® (k).
Then the corresponding filters can be computed. The minimization is a challenging problem
because of the nonlinear relation between the lattice and filter coefficients,

The time-domain approach expresses the PR conditions directly on the filter coefficients.
Nonlinear quadratic constrained optimization yields good filters. One optimization method for-
mulates the PR conditions in terms of matrices and the filter coefficients [Nayebi1]. The algo-
rithm iteratively solves (10.5). An alternative is to formulate the objective function and con-
straints in quadratic forms:

Minimize h'Ph subjectto k' Quh = c;. (10.7)

We may use Lagrange multipliers (explicitly or implicitly). The advantage of this constrained
quadratic approach is that the derivatives and the Hessian of both the objective function and the
PR conditions can be computed exactly.

Spectral Factorization Method

Given a polynomial of the form P(z) = Fy(z) Ho(z), the objective here is to find the two un-
known polynomials Fg(z) and Hy(z). We assume that all polynomials have real coefficients.
Note that Fy(z) = z7¥ Ho(z™!) in a paraunitary filter bank, and the problem becomes a spec-
tral factorization. For a low-degree polynomial P(z), one can find its zeros and distribute them
to Fu(z) and Hg(z). Since all polynomials are real-valued, the zeros have to be in complex-
conjugate pairs.

For example, consider the maximally-flat halfband filter P(z) of length 15. Its zeros are
shown in Figure 10.12 with 8 zeros at w = 7. Given the 14 zeros of P(z), there are many ways
of distributing its zeros to Fy(z) and Ho(z). One can assign half the zeros to Hy(z) and half to
Fy(z) in such a way that Fo(z) = 277 Hy(z™"). This means that zq is a zero of Hy(z) when zp'is
a zero of Fo(z). The factorization assigns half of the zeros at  to Hy(z), and the remaining half
to Fo(z). For minimum phase, Hy(z) has all other zeros inside the unit circle, whereas Fo(2)
has all the zeros outside the unit circle. Both filters have length 8. This factorization yields a
paraunitary filter bank and the Daubechies Djg orthogonal wavelets.

Part b shows an altemnate zero distribution. The zeros are chosen such that the resulting filters
have odd length and linear phase. Note that Hy(z) and Fy(z) have the same number of zeros at
w = . This (9, 7) pair is used in the FBI fingerprint image compression standard.

Part ¢ shows another zerc distribution that yields linear phase with even length. Note that
the zeros at 7 for Ho(z) and Fy(z) are not the same. The scaling function and wavelet from the
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Figure 10.12: The zerc distributions of Fe(z) and Hy(z). (a) Paraunitary filter bank (b) Linear
phase filier bank (Type B, odd length) and (c) Linear phase filter bank (Type A, even length).
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synthesis bank is smoother (it has more zeros at &), This is the (6, 10)-tap filter pair, Its per-
formance is very good in image compression. The three factorizations demonstrate the essential
ideas in designing two-channel paraunitary filter banks (orthogonal wavelets) and two-channel
linear phase filter banks (symmetric wavelets).
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Spectral factorization applies to the design of two-channel filter banks and Near-Perfect-
Reconstruction cosine-modulated filter banks. In the two-channel filter bank case, Fu(z) and
Ho(z) are the factors of P(z). In the NPR cosine-modulated case, the prototype filter H(z) isa
spectral factor of a 2M-th band filter. For an arbitrary filter bank, such simple PR/NPR condi-
tions do not exist. There is no optimization process involved in spectral factorization. In general,
an optimal filter £(z) does not guarantee optimal filters Hy(z) and Fo(z).

For orthogonal filters, the cepstral algorithm of [Mian-Nainer] is widely used. It computes
the minimum phase spectral factor without finding the zeros. Section 5.4 describes this (additive)
splitting of the logarithm of P(e/®).
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Lattice Structure

Most PR filter banks can be implemented based on lattice structure. For any set of lattice coeffi-
cients, the paraunitary, linear-phase, and cosine-modulation properties are structurally imposed.
This means that those properties (and also PR) are enforced independent of the lattice coefficient
values. The objective function could take many different forms depending on the applications.
Examples are stopband attenuation, coding gain, and interference energy. The lattice method is
used for two-channel paraunitary filter bank [VaidHoang], the two-channel biorthogonal linear-
phase filter bank [V], the M-channe! linear-phase paraunitary filter bank [Soman], and the pa-
raunitary cosine-modulated filter bank [Koil2].

Another role for lattices begins in the time domain. Optimization yields a Near Perfect Re-
construction (NPR) solution:

D k) f(2m —n) <€ < 1070 for k 5 £, m # 0. (10.8)

From these NPR filters, one can find the lattice cocfficients. Those give PR filters hf Rin) and
jf”(n). If the reconstruction error ¢ is small, the NPR filters and PR filters are close and ®F# ~
®. If € is not small, the filters are not close and & could change drastically.

Synthesize the
lattice coefficients

Design h k() and

f x(n} in time domain

Given the objective
function and constraints

(near PR)
"\,\
l\. ./.
e R ¥
Find the complete Oglam PR ﬁlt:rs
lattice structure hy (n) and f (n)

There are two key points to ensure success:

» Existence of complete and minimal lattice structure. The completeness is crucial here
since the lattice structure must cover all filters with the given properties. Minimal is
desirable to ensure efficient implementation,

» The reconstruction error € must be sufficiently small to guarantee that 78 ~ &. A
typical objective function is stopband attenuation.

Example 10.5. A two-channel linear phase system of length 32 is shown in Figure 10.13(a)
(solid lines). These filters are designed with ¢ = 107, They are used in the above lattice syn-
thesis procedure to obtain a PR filter bank (broken lines). The attenuation has changed from
—42dB to —25dB. Apparently, 10~ is not small encugh. Figure 10.13(b) shows the frequency
response of the NPR solution with ¢ = 10~'# (solid line) and the PR solution (broken line). The
NPR filters are very close to PR. Practically, there are no changes in the frequency responses.
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Figure 10.13: NPR and PR filters obtained by lattice synthesis for e = 10~* (left) and ¢ = 10~
(ight).

What went wrong in the lattice synthesis that changes the filter response drastically when ¢
is not small? Note the subtle difference between PR and NPR lattice structures in Figure 10.14.

The delays are no longer 72, but z~!, There are additional blocks T, = ; };" between
4

[y. A large € will yield nonzero ¥, and setting them to zero will change the filters dramatically.

Since P; are very smallif ¢ < 10714, setting 7 = 0 does not change the frequency responses or
the objective function.
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Figure 10.14: Lattice structures for PR and NPR Type-A linear phase filter banks.
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Time-Domain Methods

Block matrix approach:  This method is suggested by [Nayebil] to solve the PR equations
when the filter length is N = LM:

- P} 0 o [ 0 ]
Py P 0 .
. : ) 9
: : . : Q‘i" 0
PP, P, ... P} : =\ J (10.9)
0 P, ... P : )
. : =
: : : —_— :
o 0 SRR 0 | 0 ]
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J is the exchange matrix (reverse identity). Its location determines the delay of the system. The
entries of the filter matrices are Py, = ki (£) and Oy, = f(€). The M x M submatrices P ; and
Q; are defined by:

P=[Po P\ -+ Py ] and 0=[Q @ - @, ] (1010

Chapter 9 used this formulation for LOT (N = 2M and L = 2), where (10.10) reduces to
PIP +PIP =1 and PIPy=0.

In summary, the time domain PR constraints AQ = B are general. Given the analysis filters
hy(n) (and thus A), this is not always solvable. One can find “optimal” synthesis filters @ =
(ATA)~" AT B by minimizing |4 @ — B|. Then fix those filters £, (n) and reverse the equation
to find optimal hy(r). This is the iterative block matrix approach.

Quadratic Constrained Least Squares method (QCLS): For an M-channel paraunitary filter
bank, the PR condition requires ne distortion (¢ = 0) and no aliasing (k > 0}
1= N l &
_ - - - 2
L@ = + ; 2N Hy(z Y HezW*) = 8(k) 2°.

Let & be a column vector consisting of all the filter coefficients Ay (n):
b= (ho(0) -« ho(N) -+ Ry 1(0) - hy_1(N))T.

The PR conditions can be written in the form &7 G h =0and A7 S, h = 1. Furthermore, the
objective function for stopband attenuation can be formulated as a quadratic ® = k7 Pk, where
P is symmetric and positive definite. The optimized filter is precisely hqp such that

BT Q. h =0,

KT Sk =1, (10.11)

hop minimizes A7Ph  subject to l
Since Q is normally not positive definite, the solution can be difficult. However, there are effec-
tive optimization procedures that linearize the quadratic constraints [Schittkowski]. These pro-
cedures will yield an approximate solution (the constraints are not satisfied exactly). The errors
are very small and can be ignored in most practical cases. The QCLS method is used to design
the two-channel PR linear-phase filter bank [QCLS], the NPR Pseudo-QMF bank [Nguyenl],
the PR cosine-modulated filter bank [QCLS), and the M-channel paraunitary linear-phase filter
bank [Nguyen2].

10.4 Design of Two-Channel Filter Banks

This book has emphasized the construction of Hy(z) and Fy(z) as factors of a halfband filter
Po(z). This method is conceptually simple, and good in practice. The other two approaches,
based on lattice structure and quadratically constrained optimization, look awkward by compar-
ison.

But those methods have their own advantages. The lattice structure is efficient to implement,
once it is found. The optimization can yield “best” filters rather than “good” filters. This brief
section will record the details for the two cases of greatest significance: orthogonal filter banks
and tinear phase filter banks.
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Figure 10.15: Lattice structures for the two-channel paraunitary filter bank. The first structure
uses rotation angles as parameters and the second structure uses lattice coefficients.

Lattice Structure Method

Figure 10.15 shows two lattice structures for a paraunitary filter bank and orthogonal wavelets.
The objective is to find the right set of angles 6, in U, (or lattice coefficients ot in V) such that an
objective function is minimized. The objective function considered by [VaidHo] is the stopband
error (L; norm). There are several tables compiled for orthogonal filters with various frequency
specifications,

Figure 10.16 shows the two lattice structures for linear phase filter banks. Recall that Type A
yields filters with even length (one is symmetric and the other is antisymmetric). Type B yields
symmetric filters with odd length. In Type A, the parameters are the lattice coefficients in .
[NgVal] presents design examples for both Type A and B systems, designed using the nonlinear
optimization where the parameters are the lattice coefficients.
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Figure 10.16: Lattice structures for symmetric filter banks, even and odd lengths.
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Time-Domain Method — QCLS Formulation of Orthogonality

The orthogonality condition is that P(z) = 2~ Hy(z~ ') Hy(2) is a halfband filter. We will show
how to formulate this in quadratic form A7 @,k = ¢, using

k= [ho(0) ko(1) - ho(N))T and ey =[1 27 - z7¥]" and Ho(z) = ¢" (2)h.

Then 2~V Hy(z ™) = A7 Je(z) where J is the reverse identity matrix (antidiagonal). Therefore
P(z) = b7 Je()e" (2)h. Let

- L i+j=k
e()e’ ()= 2Dy where [Dy); = | o ea = (10.12)
Then P(z) can be rewritten as
PRY=Y *WIDk =) pkyz. (10.13)

In other words, the kth coefficient of P(2) isp{k) = h7 JDih. The halfband condition on P(z)
gives the constraints in the design problem:

ming, hTPh  subjectto AT JDy_i_2h = 8(n).

Here h” Ph denotes the stopband energy. See [Nguyen3)] for more examples.

Lagrange Multiplier Method

With the choice of Fp(z) = H(—z) and F1(z) = — Hp(z) to cancel aliasing, the filters Hp(z) and
H,(z) must satisfy the PR condition Hy(z) H(—z) — Hi(z) Ho(—z) = z~°. This is equivalent to
C hy = m, where C is a matrix whose elements come from Ay (). The highpass filter is &, and
the k-th element of m is 8(k — {). Given hg(n), the minimization problem becomes:

Minimize & subjectto Ch, =m. (10.14)
The minimization constructs a Lagrangian function
L(hy, 2y =& — AT (Ch) —m). (10.15)

The optimality conditions 3L /3h) =0 and 3L /0% = O are

ad
. C'A=0 and Ch—m=0. (10.16)
1

In some cases @ can be expressed explicitly in terms of #{. When stopband error is the objective
function, & has the form k] S1hi + STh) + 3. The optimality conditions become

[ SN aorm
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QCLS formulation for Type A: The filter length is 2m and the PR condition is

dm—2
TR) = Y tmz™ = —Hy@}H(=2) + Ho(-2)Hi(2) = z~®" D, (10.18)
n=0

Substituting (—z) for z in (10.18), one obtains #(n) = 0 for even n. Consequently we have m
conditions on the odd-numbered coefficients:

0, O0<k=m-2
k1. (10.19)

f(2k+l)=l I

Leth = (ho(0) -+ ho(m—1) h(0) --- hy(m —1))" . Our objective is to express the
m conditions in (10.19) in terms of A. The polynomials Ho(z), H;(z)}, Ho(—z) and H{—2) can
be written using e(z) = (1 277 --. z7™~)T:

e() +z7"Je(D)

Ho(2) = k"( 0 ) Ho(~2) = hr( Ue(z) + (—=1)"*¢~"JUe(2) )

0

¢

Hiizy=h ( e(z) — 7-"Je(z) ), H(-z)=h ( Ue(z) — (_l)mﬂz—mJUe(Z) )

Here J is the exchange matrix and U is diagonal with Uy, = (— 1)*. Substituting into (10.18),
T(z) is simplified to

T@) =h' (g Fff))k where E(z) = e(2)e’(z) and (10.20)

['(z) = (VE(z) —E@QU]+27" [(—1)'"f2(JUE(z) + E@UJ)
— (VE@)J +JE(z)U)] + 27 (1) (JE()UJ — JUE(2)]).

dm=2
Substituting (10.12) for E(z) produces a polynomial Y z™*h" (g r(';)h where the T} are
k=0

constant matrices Dy, J and U, Comparing term by tertn in (10.20), (10.19) becomes

{ B Qu h=0 0<k=m-2

0T,
o= where @, = ( ) and 10.21)

o 0

vp, -b,U; O<n<m-—1
UD, — DU + (—1Y"2 (JUD_py + DUy ~ (UDp_nJ + JD_U);

m=<n=<2m-2

(=1Y™2 (JUDp—y + Dy UJ) — (UDpp—1J + JDyp U); n=2m-1.

In surnmary, the PR condition in (10.19} is rewritten as m quadratic constraints on k.

Ip ==

Example 10.6. The QCLS formulation is used in the design of a Type A bank with filter lengths
30. The objective function ¢ is

f " [ Ho(e™®) ~ Ho(e)? + | Hy (")) dow + f [|Hole!)? + [Hi(e'™) — Hi (/)" dew
L}] ’ @y
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Note that both passband and stopband errors are included since this is not a power cemplemen-
tary system. This is an NPR filter bank with ¢ = 1.5 x 10~'5, The figure below shows the
frequency responses of the filters.

Magnitude Response {(dB)
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We close by noting four other design methods for two channels:

» Biorthogonal filter banks with integer coefficients divided by 2* [AH].

s LMS-based algorithm [Roy].

Biorthogonal linear-phase filter bank [Phoongl, Kiya].

¢ Alias-free two-channel allpass-based IIR filter bank [V, Vaidl, Nguyend, EkPr].

10.5 Design of Cosine-modulated Filter Banks

A cosine-modulated filter bank is very efficient. It can be implemented using one prototype fil-
ter H(z} and a cosine-modulation block. The M filters Hy(z) are cosine-modulated versions of
H(z). As aresult, a 32-channel bank with length 512 has only 256 unknowns (assuming lin-
ear phase), instead of 16, 384 unknowns in the general case. This helps the design algorithm
tremendously in terms of convergence speed and results.

There are many design algorithms and they all use H (z). What properties does & (z) satisfy
to obtain NPR solution or PR solution?

e Nearly PR If H(z) is a spectral factor of a 2M-th band filter, amplitude and phase dis-
tortions are eliminated. Aliasing is suppressed by sufficient stopband attenuation.

e Exactly PR Let H(z) be linear phase. The 2M polyphase components G, (z) of a parau-
nitary cosine-modulated filter bank have to satisfy

1
Gie(z™) Gr(@) + Garaa(2™") Guas (2) = R (10.22)
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We begin with NPR methods that are based on spectral factorization. Lattice structure and
time-domain approaches will also be discussed, for PR designs. We will see that NPR methods
tend to give better stopband attenuation,

Traditional Pseudo-QMF Bank Design

Pseudo-QMF Banks are NPR and cosine-modulated. They were proposed for communication
and audio processing applications. Aliasing of the adjacent bands is cancelled by appropriate
phase terms in the modulation. The nonadjacent aliasing terms are minimized by designing a
prototype with good stopband attenuation 8;. The aliasing level is comparable to 4, and the
reconstruction error consists of distortion ($4) and aliasing (®,):

n n
®=,4 0, =( —oz)f |To(e®) — e=i%|* dw +af |H )| do.
0 Wy

The weighting factor has 0 < & < 1, and € is the system delay. There is typically a tradeoff
between distortion and aliasing. Distortion is eliminated if H(z) is restricted to be a spectral
factor of a 2M-th band filter P(z). The objective function becomes simply @,.

Spectral Factorization Evaluating H(z) H(z™') on the unit circle z = ¢/ yields a nonnegative
function P(e/®) = |H(e’*)|2. How does one design P(z) where P(e/®) > 0? The design
procedure is as follows:

¢ Design an equiripple 2M-th band filter with F(N) = 5} and (N — 2M£) = O for
€ # 0. N is large since P(z) must also have good stopband attenuation §,.

¢ Form another 2M-th band filter P(z) (nonnegative!) by P(z) = &, ¥ + f;(z).
Factor P(z).

The lowpass filter Hy(z) and the highpass filter Hy_((z) are most affected by the choice of
factor (minimum phase or near linear phase). Their passbands are combinations of two pass-
bands and they have bumps or dips [Koil3] if the phase of H (z) is not linear.

H Ho HM-I

L

0= ® g R ®
M 2M

[Nguyenl] uses QCLS for linear-phase factorization. The resulting cosine-modulated filter
bank has no distortion, small aliasing (comparable to stopband attenuation), and flat passband
responses for Ho and Hy . A 32-channel system of length 512 is shown, with distortion § x
10~ and aliasing —83 dB.
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QCLS in NPR Pseudo-QMF Deslign

The linear phase relation H(z) = 2~ H(z™!) expresses the coefficients p(n) as B D(n)h. The
matrix I}n) depends on the index » and the filter length [Nguyen1). The design becomes a
quadratic-constrained minimization:

Minimize the stopband error @, subjectto p(n) = BT D(n)h = 2M-th band filter.

The quadratic forms have simple derivatives and Hessians, which makes the optimization search
very fast. A high-order system design like the example above takes about 4 minutes on a Sun
Workstation 10.

Lattice Structure Method

In a PR cosine-modulated filter bank of length N = 2mM, each polyphase component pair
(G(2), G p44(2)) is paraunitary, The design procedure based on lattice structure is:

) 4
¢ Initialize the angles 8;. Compute H.{z) and & = f |H’(e*“")|2 dw.

g

e [terate on 8¢ to minimize &.

This method works well for short filters. One needs a time domain approach to design long
PR systems with high attenuation. We show the frequency responses of two eight-channel PR
cosine-modulated filter banks with lengths 64 and 80. The stopband attenuation improves from
~46 dB to —52 dB (no distortion or aliasing). The attenuation using the QCLS is —58 dB, a
significant improvement from —352 dB.
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Time Domain Method in PR Design— QCLS Formulation

The objective is to design the linear phase prototype filter H (z) such that its 2M polyphase com-
ponents G(z) satisfy the PR conditions (in pairs k and M -+ k). Let & be a vector of length mM
consisting of the first half of 2{n). Let e be a delay vector of length m with components z*.
Then the polyphase components G;(z) can be written as kA7 Vie, where [(Vili; = 1 only for
i =k 4 2jM. The PR condition (10.22) on the pair G;(z) and G pr42(z) becomes

1
BT [ViJee VI + Vi Jee™ Vi, b= mz-‘""”. (10.23)

Substituting ee” = Y 2" z"D, where [D,];; = 1 only fori + j = n, we obtain the
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Example of an 8-channel cosine-modulated filter bank with length 80.

PR condition in terms of A(n) :

1
BT [VD.V] + VydD, Vi, Jh = 537 S —m+ D). (10.24)
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The design problem has these quadratic constraints [QCLS]. The objective function & is also
quadratic in k. As an example, we design an 8-channel cosine-modulated filter bank with length
80. The frequency responses of the analysis filters are shown above.

Final Design Example: M Channels with Linear Phase (GenLOT)

Linear phase filter banks are not cosine-modulated. For M = 2, they are constructed by fac-
torization of the Daubechies polynomial or any symmetric halfband P(z). They can also be de-
signed by optimizing the lattice coefficients in the lattice structures [NgVaidl]. For M > 2, there
is no simple spectral factorization method and one has to rely on lattice structure or time-domain

At

0
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Frequency responses of a 10-channel linear-phase system with length 40,
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Lattice structures exist for even M, when the length is a multiple of M (see Chapter 9 and
[Soman, deQueiroz]). The figure above shows the frequency responses of a 10-channel linear-

phase system with length 40. These are designed by optimizing the lattice coefficients for stop-
band attenuation (left) and coding gain (right),
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An NFPR design (also linear phase) gave attenuation of 43.7dB.
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One notices from those GenLOT designs that the stopband attenuation does not improve sig-
nificantly as the filter length increases. One way to obtain high attenuation is to trade off the
reconstruction error and stopband attenuation [Nguyen2]. An 8-channel PR design gave us
attenuation of 28dB using the lattice structure. On the other hand, an NPR design (also linear
phase) gave attenuation of 43.7dB in the last graph shown. The price was amplitude distortion

of 0.0365 and aliasing of —47dB. The acceptability of a near PR design depends on the appli-
cations!



