Chapter 4

Filter Banks

4.1 Perfect Reconstruction

A filter bank is a set of filters, linked by sampling operators and sometimes by delays. The down-
sampling operators are decimators, the upsampling operators are expanders. In a two-channel
filter bank, the analysis filters are normally lowpass and highpass. Those are the filters Hy and
H, at the start of the following filter bank:
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This structure was introduced in the 1980’s. It gradually become clear how to choose Hy, H;,
Fo, F) to get perfect reconstruction: X(n) = x(n — ). The gap in the figure indicates where the
downsampled signals might be coded for storage or transmission. At that point we may compress
the signal and destroy information. Perfect reconstruction assumes no compression, so the gap
is closed.

To indicate that Ho is lowpass and H) is highpass, we often sketch the frequency responses.
Figure 4.1 shows that they are not ideal brick wall filters. The responses overlap. There is alias-
ing in each channel. There is also amplitude distortion and phase distortion (our drawing does
not show the phase). The synthesis filters Fy and F; must be specially adapted to the analysis
filters Ho and H\, in order to cancel the errors in this analysis bank.

The goal of this section is to discover the conditions for perfect reconstruction. This means
that the filter bank is biorthogonal. The synthesis bank, from F and F; and 1 2, is the inverse of
the analysis bank. Inverse matrices automatically involve biorthogonality. (The rows of T and
the columns of T~ are by definition biorthogonal.) This will extend in Chapter 6 to biorthogonal
scaling functions and wavelets,

Perfect reconstruction is a crucial property. If the sampling operators (J 2) and {t 2) were
not present, a reconstruction without delay would mean that FoHy + F\H, = 1. A perfect re-
construction with an I-step delay would mean (in the z-domain) that

without (| 2)and (12):  Fo(DHo@ + R H @) =27 “.1)
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Figure 4.1: Rough sketch of frequency responses. Do not expect | Ho(w)| + |H\(@)] = 1.

We do expect an overall delay z~/, because each individual filter is causal.

Now take account of the sampling operators, which introduce aliasing. We recognize alias-
ing by the appearance of —z as well as z (and @ + 7 as well as w). The combination of (| 2)
followed by (1 2) zeros out the odd-numbered components. In the z-domain it keeps only the
even powers of Hg(z) X (z):

The transform of (t 2)({ 2)Hox is J(Ho(z)X (z) + Ho(—2)X (—2)).

This is an even function, because the odd components are gone. The aliasing term Hy(—z) X(—z)
is multiplied by Fo(z) at the synthesis step. This alias has to cancel the alias Fy(z) Hy (~2)X (—z2)
from the other channel. So there is an alias cancellation condition in addition to a reconstruction
condition;

1 Alias r:ancel!atlon Fo(z)Ho( z) + Fl(z)H1( z)

4.2)

Correction The samplmg operators also produce a change in equation (4.1). The right side
has an extra factor 2. You can see this by considering a simple set of filters: Hy(z) = 1 and
Hi(z) =27, Fy(z) = z7" and F(z) = 1. This satisfies (4.2) and cancels aliasing. The left side
of equation (4.1) equals 22! rather than z ™!, The overall delay is { = 1 for this filter bank, and
its perfect reconslrucuon comes from

4.3)

The next page establlshes these two COI'Id]thnS (4 2—4 3) for perfect reconstruct:on

One further point. In a genuine filter bank, the highpass filter has H; = 0atz = 1 (orw = 0).
Equation (4.3) becomes Fo(1) Hy(1) = 2. That equation is more natural if we include an extra
factor +/2 in the filter coefficients. For a similar reason the highpass filters can be normalized by
an extra +/2. We take this opportunity to assign single letters C = ~/2H, and D = ~/2H| to the
analysis filters, with no need for subscripts. The sum of lowpass coefficients c(n) = J2h(n) is

V2.

No Aliasing and No Distortion Conditions (4.2) and (4.3) for perfect reconstruction come
directly from following a signal through the filter bank. The original signal is x(#). The lowpass
analysis filter is Ho. In the z-domain this produces Ho(z) X (z). Now downsample and upsample:

First (1 2) produces  [Ho(z?)X(z?) + Ho(~z1)X(—z5)]

Then (t2) produces  3[Ho(2)X (2) + Ho(—2)X (~2)].
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(1 2) (I 2) Hox has zeros in its odd-numbered components. Those zeros are produced by av-
eraging Hox(n) with its alternating alias (—1)"Hpx(n). In the z-domain this is the average of
Hy(2)X (z) with Ho(—z) X (—2z). The aliasing term has entered the filter bank.

The final filter multiplies by Fo(z). This yields the output from the lowpass channel. Below
it we write the corresponding output from the highpass channel (same formula with subscripts
changed to 1):

lowpass output

3 Fo(2) [Ho(2)X (2) + Ho(-2) X (~2)]

highpass output = 1F;(2) [Hi(@)}X () + Hi(—2) X(~2)].

Now add. The filter bank combines the channels to get ¥(r). In the z-domain this is X (z). Half
the terms involve X (z) and half involve X (—z):

1 1
E[Fo(z) Ho(2) + () Hi(2)]X (2} + -i[Fo(Z)Ho(—Z) + R H ()] X (—2).

For perfect reconstruction with ! time delays, this f(z) must be 27! X (z). So the “distortion
term” must be z~ and the “alias term" must be zero:

Theorem 4.1 A 2-channel filter bank gives perfect reconstruction when
Fo(2)Ho(z2) + Fi{2)Hi(2) = 22 4.4)
(D Ho(-2) + Fi(9)Hi(—-2) = 0. 4.5)
In vector-matrix form these two conditions involve the modulation matrix H,,(2):

[Fo(2) Fl(z)][ o s )= a @)

This matrix H,(z) will play a very important role. It involves the responses Hi(z) and their
alias terms Hy{—z). For an M-channel bank the matrix will be M x M. But the reaj problem
is clearly identified by the separate conditions (4.4) and (4.5) — how o design filters that meet
those conditions?

Alias Cancellation and the Product Filter P, = FoH,

At this point we have four filters Ho, H\, Fg, F; to design. They must satisfy (4.4) and (4.5). It
is almost Irresmuble to delermme some of the ﬁlters from the others

‘_‘ For ahas cancef!auon choose F'a(z) H]( z) and F] (z) = —HD(—z) 4.7

Important ThlS chmcc auto atlcally satlsﬁes Fg(z)Ho( z) + F; (z)Hl( z) = 0 Allasmg is
removed, it cancels itself! This relation of Fy to Hy and of Fy to Hy gives the alternating signs
pattern of a 2-channel filter bank:

><| b, _q, ] ?—tl Fo(Z) HI( Z)
H —a, b, —¢ Fi(z) = —Hy(—2)



108 Chapter 4 Filter Banks

Now comes a definition that allows us to rewrite equation (4.4) for no distortion:
Define the product filter by Py(z) = Fp(z) Hp(2).

This is a lowpass filter. The highpass product filter is P1(z) = Fi(z)Hi(z). These products
Py and Py are exactly the terms in (4.4). The crucial point is the relation between Py(z) and
Pi(z), when the synthesis filters are determined by Fy(z) = H\(—2z) and Fi(z) = —Hy(—2).
We substitute directly to find-that P (z) = —Py(—z):

P1(2) = —Ho(=2) H (2} = —Ho(—2) Fo(—2) = — Po(—2). (4.8)
The rcconstructmn cquatlon Fo(z)Ho(z) + F. ) H, (z) =271 mmphﬁcs to

FO(Z)HG(Z) - F{)( Z)Ho( z) PO(Z) Po(—Z) 2z". . @9
The design of a 2-channel PR filter bank is reduced to two steps -

Step 1. Design a lowpass filter P, satisfying (4.9).
Step 2. Factor Py into FoHg. Then use (4.7) to find F, and H,.

The length of Py determines the sum of the lengths of F and Hy. There are many ways to design
Py in Step 1. And there are many ways to factor it in Step 2. Experiments are going on as this
book is written, and undoubtedly they are going on as the book is read, to find the best factors
Fy and Hy of the best product filter Py,

Note that (4.9) is a condition on the odd powers in Py(z) = Fy(z) Ho(z). Those odd powers
must have coefficient zero, except 2~ has coefficient one. The shift to P(2) in equation (4.11)
below will remove the even powers except z°.

A look forward To help the reader find the specific filters that are coming, we point to an out-
standing choice for the product filter;

Py(z) = (1 + 2717 0(2). (4.10)

The polynomial Q(z) of degree 2p — 2 is chosen so that (4.9) is satisfied. There are 2p — 1 odd
powers in Po(z), and 2p — 1 coefficients to choose in Q(z). Then Q(z) is unigue. This is the
Daubechies construction, with a history that we will outline in Section 5.5. Since the construc-
tion starts with the special factor (1 4 z~")?P, these filters are called binomial or maxflat. The
binomial factor gives a maximum number of zeros at z = — 1, which means that the frequency
response is maximally flat at @ = x. The binomial by itself, without Q(z), represents a “spline
filter”. Q(z) is needed to give perfect reconstruction,

Splitting Py into Fo Hy can give linear phase filters (symmetry in Fg and Hy separately). Itcan
give orthogonal filters (symmetry between Fy and Hy). It cannot give both, except in the Haar
case p = 1. Section 5.4 discusses the factorization, and Chapter 11 reports some comparisons
for image processing.

Simplification The equation Py(z) — Py(—2z) = 2z~ can be made a little more convenient.
The left side is an odd function, so / is odd. Normalize Py(z) by 7! to center it:

The normalized product filter is P (z) = 7' Py(2).
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Then P(—z2) = (—z)’ Po(—z). Since ! is odd, this is —z‘ Py(—z). The reconstruction equation
Po(z) — Po(—2) = 2z~ takes an extremely simple form when we muitiply by z’. The factor z~/
disappears and the minus sign becomes plus:

Perfect Reconstruction Condition. P(z) must be a “halfband filter”

E P(z) +.f:.'"(—z)..-—; 2. @.1m

This means that all even powers in P(z) are zero‘except the constant term (which is 1). The odd
powers cancel when P (z) combines with P(—z) —so the coefficients of odd powers in P(z) are
design variables in 2-channel PR filter banks.

Example 4.1. The maxflat product filter Po(z) = (1 +2z~")*Q(z) happens to be

Po(z) = H(—1+9272 + 16273 + 9774 — z76).

The center term is 2~ = z~'. The requirement Py(z) — Po(—2) = 2z~ is quickly verified,

because the even powers in Fp cancel in the difference. The function Q(z) = —1 + 4z~ —z~2
was chosen so that the odd powers 2~} and 2% are absent from Py(z).

A centering operation gives the normalized product filter P(z). Multiply by z' = 23 to sym-
metrize the polynomial around the constant term z0:

P(@) = (=22 + 92+ 16+ 9771 —z73),

This is halfband, because the only even power is z® and its coefficient is 1. The perfect recon-
struction requirement P(z) + P{—z) = 2 is verified. The odd powers in P cancel in the sum.

Notice the variety of factorizations into Py(z) = Fp(z) Ho(z). The polynomial Py(z) has six
roots. The two roots from Q(z) areat¢ = 2 — +/3 and % = 2 + +/3. The other four roots
from (1 + z~')* are at z = —1. Each factor normally has at least one root at z = —1 . (But
the factorization into Hy = 1 and Fy = Py is quite interesting.) Thus Fy or Hy (either order is
possible!) could be

(a) 1 degree N =0
® (d+zhH degree N =1
© A4z WVlor(d+zWe-2z" degree N =2
(d A+zVor(l+2zYc-—2zH degree N =3

The number N + 1 of filter coefficients is one greater than the degree. Thus (c) can produce a
5/3 filter, with Ho(z) = 3(—1+ 227" 46272 4+ 227 — z7%) and Fy(2) = 1(1 + 227! + 272).
The analysis length is given first. This is a possible choice for compression, with symmetric
filters of very low complexity. The binomial (1 -+ z77)? in the synthesis filter means that its
continyous-time scaling function will be a hat function. Reversing #, and Hy gives a 3/5 pair,
not as successful in practice.

The choice (b) is also of interest. One factor is 1 + z~! so one scaling function is the box
function. Experiments indicate better performance when this short lowpass filter is in the anal-
ysis bank. Where 5/3 was preferred to 3/5 for odd-length filters, it seems that 2/6 is preferred
to 6/2. Five roots go into Fp(z).

The other outstanding choices are length 4/4 from the factorizations in (d). We get linear
phase from (1 +2z~")% and (—1+43z7" + 3272 — z~3). The orthonormal Daubechies filter comes
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& = roots of Hy(z) and x =roots of Fy(z)

from (1+27')*(c =z~ "y and (1 +27')2(L —2™"). These are not linear phase. (Problem 7 shows
that linear phase requires % to be aroot when ¢ is a root.} For the Daubechies orthogonal choice,
the roots —1, —1, ¢ of one factor are the reciprocals of the roots —1, —1, % of the other factor.
Section 5.4 demonstrates that this balanced splitting (spectral Jactorization) of a halfband filter
produces an orthogonal filter bank and orthogonal wavelets.

Example 4.2. (Haar filter bank) The average-difference analysis filter has

_[ H@ H-2 | _ 1 [ 1+z7" 1-z"
Hm(z)_[ HI(Z) H](—Z) ]_ ﬁ[ l_z—l I+Z_] ]
The synthesis filters are
RB@ =  H(-) = (+zYV32
A = -H(-2) = —(l-z7")2"

The product filters are

Pol(z) = Fy()Ho(2) = J(1 +z7')?
Pi(2) = FiH1(2) = —3(1 — z71)% = — Py(~2).

Both Py and Py contain +2 ', Perfect reconstruction Py(z) — Po(—z) = 2z~ means that/ = 1.
The normalized product filter (symmetric halfband) is

P@)=2'Py@) = z(1+ 27"V = Je+ 1 + 17,

Modulation Matrices
The conditions for perfect reconstruction are expressed in (4.6) by

tho A 2O Y ]={2z-’ 0L @.12)

This displays the analysis modulation matrix H,,(z) — which is central to filter bank theory.
With no extra effort we can also produce the synthesis modulation matrix F, w(Z). The two ma-
trices should play matching (and even reversible) roles. This balance between Fp and Hy, is
achieved by expanding (4.12) into a matrix equation:

[ Fo@)  Fi(2) ] [ Ho(z)  Ho(—2) ] - [ 2z 0 ]

Fol—) F2 || M@ Hi-2 0 2A-—g- (“.13)
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The second row of equations follows from the first, when —z replaces z. Note that F(z) is in the
(1, 2) position, but H;(z) is in the (2, 1) position. This transpose convention between analysis
and synthesis will appear again for polyphase matrices. The reader sees why it is necessary,

The reconstruction condition (4.13) applies to ¥, (2)H,(2). If we “center” the filter coeffi-
cients around the zero position, the right side becomes the identity matrix! This is so desirable
and memorable that we do it. It is the same normalization that centered Py(2) into P(2), and it
is especially clear when the filters are linear phase (and { is odd):

Theorem 4.2  [f all filters are symmetric (or antisymmetric) around zero, as in H(z) =
H(z™") and h(k) = h(—k), then the condition for perfect reconstruction becomes a statement
about inverse matrices: :

r,.(z)lar,,, (z) 3 (4.14)

The H’s determine the F’s. The ana]ySIS bank Is mverted by the synthesis bank, When we ex-
press it that way, equation (4.14) becomes almost obvious.

A Brief History of H,

The reader understands that the filters Hy and H are still to be chosen. These choices are con-
nected, Historically, designers chose the lowpass filter coefficients k(0), . . . R{N) and then con-
structed H, from Hp. Here are two possibilities that produce equal length filters. Hy will be
highpass whenever Hy is lowpass:

Alternating signs :  H\(z) = Hy(—2) comes from (B(D), —h(1), h(2), —h(3),...)

Alternating flip : Hi(2) = =27V Hy(—z"") comes from (h(N), (N —1),...).

For convenience we are assuming real coefficients. The number N is odd in the alternating flip.
The perfect reconstruction condition is still to be imposed. When that is satisfied, the overall
system delayisl = N.

Early choice, Croisier-Estaban—Galand (1976) chose alternating signs H;(z) = Ho(—2). The
resulting filter bank was called QMF (Quadrature Mirror Filter). The highpass response
|H\(e/®)| is a mirror image of the lowpass magnitude | Ho(e/®)| with respect to the middle fre-
quency % — the quadrature frequency. Note that IIR filters Ho and H/ are allowed (and needed
for PR, except for Haar!). This name QMF has since been extended to a larger class of filter
banks, allowing M channels,

Better choice. Smith and Barnwell (1984--6) and Mintzer (1985) chose the alternating flip
Hi(z) = —z7" Hp(—z7"). This leads to orthogonal filter banks, when Hy is correctly chosen.
The Daubechies filters will fit this pattern.

General choice. The product Fp(z) Ho(z) is a halfband filter. This gives biorthogonality, when
aliasing is cancelled by the relation of Fq to Hy and Fy to Hy.

Actually the synthesis bank has little freedom. Alias cancellation requires Fa(z) Ho(—2) +
Fi(z2)H (—z) = 0. Croisier-Estaban-Galand wrote each F; directly in terms of Hy by

Fo(z) = Ho(z) and Fi(z) = ~H(2).
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With alternating signs H;(z) = Ho(—z) inside the analysis bank, their synthesis construction
agrees (as it must) with the anti-aliasing equations

Fo(z) = Hi(=2) and Fi(2) = —Hp(—2). (4.15)

Smith-Barnwell also made the anti-aliasing choice (4.15). With the alternating flip in H;(z),
their synthesis filters (remembering that N is odd) are

Rz} = Hi(~2) = z7¥Hy(z™") comes from (h(N),h(N —1),..., h(0)).

Fi(z)

—-Hy(-2) = z7¥H (") comes from (—h(0), A(1), —R(2), ..., B(N)).

Notice! Each F; in Figure 4.1 has become the ordinary flip of the comesponding Hy. In ma-
trix language the synthesis matrices are the fransposes of the analysis matrices. A shift by N
delays makes them causal. When we flip to get Fg and then alternate signs to get H;, we have
the alternating flip from Hy to H,.

The alternating flip automatically gives double-shift orthogonality between highpass and
lowpass (to be explained). Conclusion: When the design of H, leads to perfect reconstruction
in the alternating flip filter bank, it also leads to orthogonality.

@, b, ¢, d]<B0d, ¢, b a] Foe) = Hi(=2) = 2 Hoz™)
alternating] flip alternating signs

| d, —c, b, —a | | -a, b, —c, d | Fi(2) = —Hy(—2)

Figure 4.2: Relations between the filters allowing orthogoenality when N = 3.

With aliasing cancelled, we now look at the PR condition
Fo(2)Ho(2) + Fi()Hi(z) = 227"

The early choice was alternating signs Hi(z) = Hp(—z). With Fo(z) = Hi(~z) and Fi(z) =
—Hp(—z). PR requires

H}(2) — H}(2) = H}() — Hi(—2) =227, (4.16)

Therefore H(z) has exactly one odd power z~'. This is not easy for the square of a polynomial.
An FIR filter is restricted to rwo coefficients (not good). Problem 4 asks for the reasoning, which
forces the filters to be 1IR.

The better choice is alternating flip. Perfect reconstruction is definitely possible. Product fil-
ters FoHy and F H) become Po(z) = 27N Ho(z7') Ho(2) and Py(z) = —z~ Y Ho(~2"") Ho(—2)
Multiply by z' = z¥ to center these filters. The normalized product filter is P(z) and the recon-
struction condition is {(4.11):

P()+ P(—2) =2 with P(z) = Hy(z™") Ho(2). @17
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This is spectral factorization of a halfband filter! On the unit circle z = /¢, the product
Hy(e™ /) Hp(e®) is 2 magnitude squared:

: N , i 2
P!y =Y p(mye ™ = |Z B(me=ine|, (4.18)
N 0
The halfband coefficients are p(n) = p(—n) for odd r and p(n) = O foreven n (exceptp(0) = 1).
We design P (z) and factor to find Hy(z). This symmetric factorization coincides with the Smith-
Barnwell alternating flip. It yields orthogonal banks with perfect reconstruction. The flattest
P(z) will lead us to the Daubechies wavelets.

A note on biorthogonality (PR) with linear phase

Theorem 4.3  In a biorthogonal linear-phase filter bank with rwo channels, the filter lengths
are alf odd or all even. The analysis filters can be

(a) both symmetric, of odd length

(b) one symmetric and the other antisymmetric, of even length.

Proof: Odd and even lengths behave differently when we alternate signs:

oddlength: a b
a b

b a — a —-b ¢ —b a (remainssymmetric)
even length: a

c
b - a -b b —a (becomes antisymmetric).
To cancel aliasing, there is sign alternation in Fy(z) = H,(—z). There is also alternation in
F1(z) = — Hp(—2). The extra minus sign does not change the symmetry type. The two success-
ful combinations are

Hy = symm Fo = symm Hy = symm Fp = symm
Do hedt
Hi = symm F; = symm H, = anti Fy = anti
odd lengths even lengths

The other possibilities are excluded by the PR condition: F3(z) Hp(z) has to be a halfband
filter. It must have an odd number of coefficients, and the center coefficient must be 1. For
Fo(z) Hy(z) to have odd length (which means even degree), the factors Fy(z) and Hy(z) must
be both odd length or both even length. If one is symmetric and the other antisymmetric, the
product Fo(z) Ho(z) will be antisymmetric with zero at the center - not allowed. We conclude
that Fy(z) and Hy(z) must match: both odd length or both even length, both symmetric or both
antisymmetric.

This leaves the two successful possibilities shown above, and two more: Hy and Fy both
antisymmetric. But the sum of lowpass coefficients cannot be zero. So antisymmetry of Hy is
ruled out.

Perfect Reconstruction with M Channels In reality a filter bank can have M channels. Al-
though M = 2 is standard in many applications, we often see M > 2. There are M analysis
filters Hp, 1, ..., Hy—1. The sampling is done at the critical rate by (| M) and (1 M). There
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y v I
x Ho(t) L M M Fz)
M@ HiM tMEH Fi()
Ll Hy @ | M M Fy-1() —— 3

Figure 4.3: Standard form of an M-channel filter bank {maximally decimated).

are M filters Fy, Fi, ..., Fy_, in the synthesis bank. The outputs from all channels are com-
bined into a single output ¥. Our standard picture of this implementation is Figure 4.3.

For this M-band case, the theory of perfect reconstruction was developed over several years.
When we follow each channel from Hy through (I M) and (4 M) and F;, and add, we find
M conditions for perfect reconstruction, These equations involve the M x M modulation ma.
trix Hp(2) — comresponding exactly to the 2-channel case. The modulations are by multiples of
27 /M in frequency, and by powers of W = ¢~2%//M iy the o-domain. We put that matrix on
record here,

Hy(z) Ho(zW) o Holz w:‘:)
Modulation H.=| @ H(zW) e HizWMY 4.19)
Hyu-1(2)  Hy_ (W) ... Hy 1 (zwM-1)

The last M — 1 columns represent the M — 1 aliases created by (J M), just as H(~z) represented
the one alias (W = —1) created when M = 2. The transpose of Hy (2) is the alias component
matrix.

Another matrix will play an equally central role — in fact an interchangeable role, because jt
is very closely linked to H,,,(z). This new matrix is the polyphase matrix H,(z). It is developed
and explained in the following section, as the natural way to follow the “phases™ when a signal is
subsampled. We put on record the 2-phase matrix — this is the polyphase matrix when M = 2:

— | Hoeven(2) Ho 0d0(2)
HP(Z) - [ Hl,even(z) Hl,odd(z) ]

Still looking ahead, we mention especially the orthogonal case. The polyphase matrix is then
unitary for |z| = 1 (this makes it paraunitary). H,,(z) is also paraunitary, after dividing by V2
(Section 5.1). The analysis of paraunitary matrices was led by Vaidyanathan. He and others
built onto the early theory (and nearly indecipherable exposition) of Belevitch. For M — 2,
the paraunitary matrix leads back to the Smith-Barnwell construction of an orthogonal PR filter
bank.

Several perfect reconstruction filter banks deserve special mention, Simplest is the average-
difference pair from Chapter 1. This is a useful example but a poor filter, That is the first in a
family of “maxflat fiiters”, corresponding to the Daubechies wavelets. The others in the family
are orthogonal but not linear phase — since those two properties conflict.
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Different factorizations of the product Py(z) lead to linear phase (not orthogonality). Those

filters have become favorites for compression.

For M > 2, the design of separate filters Hp, H|, .
look for constructions in which these all come from one prototype filter. A particular class is the
cosine-modulated filter banks in Chapter 9. A phase change (= modulation) is the key to their

construction. Those are efficient in every way.

Problem Set 4.1

. If (H,.(z))~! is also a polynomial, the synthesis bank as well as the analysis bank is FIR. Why

must the determinant Hy(z) H, (—2) — Hy (2) Hy(—2) in the denominator of H_' be a monomiat
¢2z~'? This determinant is an odd function, det H,,(z) = —det H,(—z). Then the exponent |/
must be odd.

. The solution of both equations (4.4-5) for Fy and F involves (H,,(z)):
2z
= —f -1 —_— —_ —_
[Folz) Fi(Dl=(2z" O)(H.(z) ' = T HL D [Hi (=2} Ho(—2)).

If det H,,(z) = 2z, as normal, this yields Fy(z) = Hi(—z)and Fi(z) = —Hy(-2).
Exira credit. Verify that the key equation P (z) + P(—z) = 2 still holds in the IIR case with
the extended definition of the product filter

_ 2R H) @)
PO =St

3. Find all filters if Hy(z) = (14=)% and Py(z) = & (~1+ 9272 + 16773 4 974 — ;-6

4. If an FIR filter Hy(z) has three or more coefficients, explain why H(z) has at least two odd

powers. Then Hg(z) — Hi(—z) = 2z~ is impossible. The “alternating signs” construction is
not PR. (This is extended in Theorem 5.3: Symmetry prevents orthogonality except with two
coefficients.)

« If Hy and Py are symmetric, why is F symmetric? Why is H, linear phase, and when can it

be antisymmetric?

» Prove Theorem 4.3 by observing that an order Rip in lincar-phase filters Hy(e/*) and Fy(e’®)

gives Hy g and Fp p:

Hy(e!*) = e 7 Wolllofhy p(e=19),  Fo(ei®y = e~iMiime By o (p=ioy
Hy(e/*) Fole’®) + Ho(e? @™} Fy(e/ @) = 2¢-it,

Ny and N, are the degrees of H,(z) and Fy(z), and £ is odd.

7. A symmetric filter has H(z ™'} = z¥ times (__). If H{(c) = 0 show that also Hb=o0.

10.

11.

. In the example with six roots, show a 4/4 linear phase pair — the roots ¢ and 1 g0 together.

5

Find the polynomials A (z) and F(z).

. The 10th degree halfband polynomial Po(z) = (1 +z“)‘S Q(z) has four complex roots r,

F, r~', 7" in the right halfplane (roots of (). Draw a figure to show the ten roots and how
Daubechies 6/6 filters will divide them: r and 7 are separated from 7~ and 7",

For the same 10th degree Py(z), show how the ten roots can give 6/6 filters with linear phase,
One filter has 5 zeros at z = —1.

(Good problem) Find the actuat dth degree O(z) that makes Py(z) halfband. If possible com-
pute its roots.

--» Hy—1 can become unwieldy. We



114 Chapter 4 Filter Banks

12. Given aPR filter bank Hy, H,, Fp, F), interchange H,(z) and Fi(z) (so that the synthesis bank
has H,(z) and analysis bank has F,(z)). Verify that the new system is PR. Define another
system Hy(z) = Hy(—z2) and F(2) = Fp(—2). Is this new system PR?

13. Let Hy(z) be a symmetric lowpass filter with even length and H;(z) = Hy(—z). Verify that
H\(z) is an antisymmetric highpass filter. Find the synthesis filters F; (z) that cancel aliasing.
Can this system be PR7 (Is P(z) a halfband filter?)

4.2 The Polyphase Matrix

This section establishes a key idea and a valuable notation. The word “polyphase” has gained
a certain mystique in the theory of multirate filters. Perhaps we can begin by explaining the
meaning of the word, and also the purpose of the idea. Then the notation and applications will
come naturally.

Meaning of polyphase: When a vector is downsampled by 2, its even-numbered components
are kept. Its odd-numbered components are lost. Those are the two phases, even and odd. It is
natural to follow the two phases of the input vector, Xeven and X,dq, as they go through the filter
bank. They are acted on by the two phases Heyen and Hogg of the filter.

For downsampling by M there are M phases. The ideas still apply to this “several-phase”
or “polyphase” decomposition. Instead of even and odd inputs we will have M vectors (phases
of x). Instead of even and odd filters we will have M filters (phases of H). The vector of filter
coefficients k(n) is separated into phases, exactly as x(n)} is separated. Then we watch those
phases during downsampling.

The word “phase” is applied because the even filter with coefficients h(0), 2(2) has a differ-
ent delay (phase shift) from the odd phase with coefficients A(1), k(3).

Purpose of polyphase: The operation (| 2)Hx, taken literally, is not efficient. We are com-
puting all components of Hx and then destroying half of them. If we don’t compute them, the
system is still working at a fast rate (high bandwidth). The output is at half rate, because of
downsampling. Each output component needs ¥ additions and N + 1 multiplications, to apply
all the coefficients A(0), . .., R(N).

The polyphase implementation works on the different phases separately. The input vector is
separated into Xeven and Xo4q. The operator (| 2) comes before the filter! 1t changes one input
at a high rate to two (or M) inputs at a lower rate. Then the separate phases of the filters act
simultaneously (in paraliel) on separate phases of the input.

The notation has to keep track of each phase. Often we find that “even multiplies even™ and
“odd multiplies odd”. The Noble Identities justify an interchange of filtering and sampling. For
the whole filter this interchange is forbidden, but it is allowed for each phase.

Polyphase in the time domain (block Toeplitz matrix): We can display the infinite matrix
for a 2-channel analysis bank. Recall that e¢(n) = N2 ho(n) and d(n) = V2 h{n). The two
filters v2Hy = C and +/2H, = D are downsampled by (] 2). This removes the odd-numbered
rows. Then we interieave the rows of L = ({ 2)C and B = (].2)D to see the analysis bank as a
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block Toeplitz matrix:

c(3y 2y el ()

d@3) 42y d(1) 40
c(3) (2 e(l) 0
a3) d2) d1)y 40

Block Toeplitz H, =

This takes the input in blocks (two samples at a time). It gives the cutput in blocks. It is time-
invariant in blocks! By block z-transform, multiplication by the infinite matrix Hy (which is
block convolution) becomes multiplication by the polyphase marrix:

Polyphase matrix H,(z) =[ :;((g; ;((11; ]+z'1[ :;((% ;((?) ] (4.20)

The polyphase matrix is nothing but the z-transform of a block of filters. There are 27 or M?
filters, from M phases of M original filters. Here those filters have four coefficients and their
phases have two coefficients.

Notice especially how the block matrix H), relates to the two separate downsampled filters
(12)C and (] 2)Dx;

The efficient form downsamples the input first (to make blocks for Hy)
The inefficient form downsamples last (after the filters C and D)

The Noble Identities prove the equivalence. It is just a removal of useless odd-numbered rows
and an interleaving of the remaining rows. Next we discuss the algebra and the implementation.

Key identity in the z-domain: The even part of X (z) is %(X (z) + X(—z)). The odd part is
1{(X(z) — X(—2)). The first has even powers 1, z%, z*; the second has z, 2%, z°. The original
X is the sum of even plus odd (obviously). The same splitting holds for C(z), and furthermore
for C(2)X(z). The key is to find the even part of C(z)X(2). It is the even coefficients of Cx
that survive downsampling and appear in (] 2)Cx. In most of this section the lowpass filter is
denoted by C, to avoid the subscripts on H.

A simple and important identity shows how the even part of C(z)X(z) comes from even
times even plus odd times odd:

HC@X @)+ C-X(-2)] = 4[CQ@)+CE=DNX@) + X(-2)] @21)
+1CGE) — C=NX @) — X (=2)]. '

In multiplying numbets, odd times odd is odd. But we are adding exponents, as in (z*)(z%) = 7%
So it is really odd plus odd, and even plus even, that yield the even part of the z-transform. This
is the part that downsampling picks out, when Cx is decimated.

The importance of the key identity is this. The left side involves alf coefficients of C(z) and
X{z). Each product on the right involves only half the coefficients. The multiplication in the
z-domain, which is (] 2)Cx in the time domain, becomes computationally efficient. We don’t
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want all of C(z)X(z), only the even half. The right side shows how to do half the work. Better
still, it shows how even-even and odd-odd can be executed in parallel at half the rate.
Downsampling an even function effectively replaces z by z!/2. It “closes the gaps” in 1,
2%, 2* by changing to 1, z, z2. For an odd function we will need a delay or an advance. We
cannot change z and z* to z}/2 and z>2. You will see how the coefficients of 27!, z=3, =5 in
C(z) become coefficients of 1,z™", 272 in the odd phase Co4a(2). There is a delay for the odd
phase and a “delay chain™ when there are multiple phases.
This chapter works out the polyphase notation. We concentrate most on M = 2; the phases
are even and odd. Then the polyphase forms of the analysis and synthesis banks lead quickly to a
matn goal of the theory. We find the perfect reconstruction condition on the polyphase matrices,
when the filters are centered: e S
B Fp@Hyy =1

This tells us, clearly and directly, what is required: ~ =~

1. Ata minimum, H,(z) must be inversible. (biorthogonality)
2. Better than that, its inverse F,,(z) should be a polynomial. (FIR)
3. Better still, Fp(z) might be the transpose of H p(2). {orthogonality)

Incase 3, the polyphase matrices are “paraunitary”. The analysis and synthesis banks are orthog-
onal. In the more general case 1, the banks are “biorthogonal”. In case 2, the synthesis bank is
biorthogonal and also FIR.

The rows of a matrix are always biorthogonal to the columns of its inverse. When the rows
of one are identical to the columns of the other, the matrix is self-orthogonal. Then it is an or-
thogonal matrix if real, a unitary matrix if complex, and a paraunitary matrix if it is a function
of a complex parameter z.

Polyphase for Vectors
Any input vector x and any filter vector ¢ or k can be separated into even and odd:
x=(..,.x0),0,x(2),0,..0+(..,0,x(1),0,x(3),0,...).
The z-transform is separated into even powers and odd powers, as in
X@ = FO+x@z7+ 1+ 27 M +x(3)2 %+ 4.22)

The even part has powers of z2. So has the odd part, when we factor out z~'. This is the poly-
phase decomposition of x in the z-domain:

X = Xewnld) + 2 XoaalD) (4.23)
Each phase has its own zlransform I T
[ x(0)
Xever = x(2) > Xo() = Zx(Zk)z'*
")
Xodd = x(3) | e Xi(@) =Y xQk+1)z*,
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Because of the z in the definition, the in-between zeros are gone from Xo(z) and X;(z). Please
verify that the phases of X(z) = z7' + 272+ z 3 are Xeyen = 27" and Xoga = 1 + 2.

Now reverse the process, to recover x. Upsampling puts zeros back into Xeven and Xoaq. Those
zeros change z to 72, The odd phase is delayed by z~*, to move x(1) from position 0 to position
1. Then addition reconstructs equation (4.25).

Here is the splitting and the reconstruction in block form. Notice that so far the filters are
not included, and ({ 2}x is exactly Xven:

12— Xeven(n) — 12
x(n) — — ;f(ﬂ)
z 12— xoalm) — 12 -

Important! The z at the start of the odd channel is because the odd phase has x(1) in its zeroth
position. We have to advance the signal to achieve that. (See Problem 1.) But advances look bad
in our flow diagram. So the advance can be replaced by a delay, if we make up for it at the end
by delaying the even part too.

Here is the “delay form™ that we use in later sections. Please go through that form:

Polyphase x(n} 2 — Xpean) — 12
with 27! 7z}
Delay 12 —xpaln—-1) — 12 x(n—=1)

Only delays are involved! This is its advantage. Its disadvantage is that the output X(n) is x(n —
1}. The whole system equals a delay, where previously the system reproduced x. The delay form
in the z-domain produces z~' X (z) by delaying the even term:

7X@ =27 XD + 27 X0 (D). (4.24)

This polyphase with delay is just the original definition multiplied by z~'.
Your eye will pick out this delay form. The output ¥ comes later than the input. We still call
this perfect reconstruction. Here is the same delay form in the time domain:

x(®
0 z™h
x(0) =0 ] ad |50 | N\ [eeh
x(1y | ~ x A 0 x(
@ |\ x(—l)] N =D x(1) | = detayedx.
x(3) x| 42 | o A L@
x(1)

0
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Polyphase Matrices for Filters

The polyphase form of a filter € comes directly from the polyphase form of ¢ (the vector of filter
coefficients). That vector separates into €even 3N Coqq. Its z-transform C(z) separates into phases
exactly as X (z) did:

C@) = Co() +27'Ci(2Y). (4.25)

The filtering step is C(z)X(z). This is ordinary filtering Cx, where even mixes with odd. But
when downsampling picks out the even part of the product C(z) X (z), it comes from even times
even plus 0dd times odd. The ransform of (| 2)Cr is |

1(2). .'?1'-

The direct multiplication of C(z) times .X {z} will have even parts from Co(z2) Xo(z%) and
from z72Cy(22) X\ (22). Those give the even part of C(2)X(z). Downsampling picks out those
terms. It changes z2 to z in their transform. The result is the z-transform of (] 2)Cx.

* COXDevn = CoDXa(@) + 2 Cu()X

(4.26)

Example 4.3, The moving average filter, downsampled.
Chapter 1 introduced the lowpass filter 1x(n) + 3%(n — 1). The coefficients are R(0) = § and
k(1) = % Thus % is the leading and only coefficient in Heven and Hoyg. Both matrices have %

on one diagonal — the main diagonal. Here is the two-phase form of (| 2)Hx:
3 i ! x(©0) L x(=1)
;3 x | = i x(2) |+ i x(1)

The polyphase components of £ + 1z~ are constants: Heven(2) = Hoga(z) = 1.
Polyphase for one filter. The downsampling operator (| 2) follows the filter C. The outputs
are Cx and then () 2)Cx. This is the normal order for filter banks, but it can be made more
efficient. A close look at the product ({ 2)C shows that the filter coefficients ¢(n) are completely
separated into even n and odd n.

Thus € has two parts (or phases), which have their own z-transforms Co(z) = Ceyen(z) and
C1(2) = Co4a(2). The 1 by 2 matrix C,(2) is the two-phase or polyphase form of C(z):

Co(z) =[Co() C ()]

Warning.  Co(z) is not 3(C(z)+C(~2)). Thatinvolves 1, 22, z*, ... with zeros between. This
is Co(z%). By definition, Co(z) closes the zero gaps and has coefficients ¢(0), €(2), e(4). Simi-
larly Cy(z) has coefficients ¢(1), ¢(3), <(5). An advance or delay is involved. We don’t keep the
zeros from the even powers in 3(C(2) - C(—2)).

The same splitting occurs for the highpass filter D. Its even and odd phases are represented
by Do(z) and Dy(z). Those go into the 1 by 2 polyphase matrix D,(z). Then the whole anal-
ysis bank comes together when we combine the polyphase matrices for C and P into a single
polyphase matrix H,(z):

o e[ 50][ 60 601w

This shows the matrix that we are aiming for. Now we go back for the close look at (| 2)C. This
operator is fundamental in the theory of multirate filters and wavelets,
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Polyphase in the time domain. When downsampling follows the filter C, we get the crucial
matrix L = (| 2)C. This has to display the separation of even and odd, and I would like to show
how this happens. Most of polyphase theory is developed in the z-domain, and we will do that
too. But first, look at the filter matrix as it produces y = Cx:

¥(0) e x(0)
yy | | - ey e x(1)
y2 |T| - e@ ey c© x2 |- @®
¥(3) C 3 @ o) e x(3)

Downsampling leaves the even-numbered components y(2n). To reach » = (] 2)y, we throw
away the odd-numbered rows. This leaves the matrix L = ({ 2)C:

¥(©0) OB ()] -"((—61)
Y | =] - e® @ ey x(l) (4.29)
¥(4) C e e ¢ @ o) O i(zi

For polyphase here is the important point. Only the even-numbered coefficients ¢(2n) are multi-
plying the even-numbered coefficients x(2n). The even and odd ¢’s are in separate columns. The
even-numbered x(0) is multiplying the column that starts with ¢(0). The odd-numbered com-
ponent x(1} is multiplying the column containing ¢(1), ¢(3), .... We can separate the matrix
multiplication (] 2)Cx into even times even and odd times odd:

»(0) - e

. - e()
Yo | =] @ o] e ew YD @a0)
y(4) Ce@) ¢ e || - es) e® ey || P
This is a matrix display of equation (4.21).
(4 2)Cx = Ceyen Xeven + (delay) Cogg Xoda- (4.31)

Thg two phases Xeven and xqqq are filtered by the two polyphase components Ceyen and Cogq. We
need a delay in the odd phase, because ¢(1)x (1) contributes to y(2) and not to y(0). Then (| 2)Cx
is the sum from the two phases:

Xeven — Ceven

— v = (] 2)Cx = Lx,

Xodd — Coad

delay

Notice something nice. The two matrices in equation (4.30) have constant diagonals. The two
operators Ceven and Coqq are time-invariant filters. They have frequency responses Co(z) =
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Ceven(2) and C(z) = Coyq(z). The delay in the odd channel can go before or after C;, because
it commutes with C). (C, is time-invariant!) The two filters involve even coefficients ¢(2n)
and odd coefficients ¢(2n + 1), without zeros in between. They can operate in parallel, more
efficiently.

Summary: Polyphase form of L = (| 2)C

The matriX Ceyen multiplies X,,e, in equation (4.31). The matrix Coag multiplies xqqq (with a
delay). We repeat this time-domain multiplication so you can compare it with the z-domain:

(3 2)Cx = [Coven (delay)Coqa) [ 'xt:‘:: ] . {4.32)

This polyphase form has two ordinary filter matrices side by side. The z-domain polyphase form
has two ordinary transfer functions side by side:

(C(2)X (@D)even = [Cevenlz) Z—lcodd(Z)] |: i?g; ] . (4.33)

If C = identity then Ceven(z) = I and the output is Xp(z). If C = delay then Coadl(z) = 1
and the output is X(z). All straightforward, but the block form shows something remarkable:
Downsampling comes before filtering !

The block form with an advance to compute X oq4 is Polyphase with Advance:

\I, 2 — Xeven — Ccven
x(n) — — (4 2DCx(n)
z 12 — xa — Coyg z-

An advance has slipped into this form to get x(1) as the zeroth component of x,44. If we prefer to
have only delays {(and we do), that is possible. Delay x in the odd channel so that (] 2) produces
Xoda{nn — 1). Then after filtering, add a delay in the even channel. The result is to delay the whole
signal by one time step in Polyphase with Delay:

x(n) 42 —  Xeven(n) —1 Ceven

z-! z"!

V2 — xea(n — 1) ~—  Coud (2)Cx(n — 1)

Key point: The polyphase form puts (] 2) before the filters. This order is more efficient. It was
possible to use the Noble Identity on each phase separately, because Ceyen(z2) and also Cogq(z2)
appeared in the right place:

(direct) (§ 2)Ceven(2) = Ceven(z5)(12) (polyphase).
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Note on our convention. It would be very satisfying to avoid the delays completely. We would
prefer to have

V() = (Cofa) cl(z)][ o ] @434)

To achieve this we can alter the definition of C,(z). The polyphase decomposition of X would
stay the same, but the decomposition of C would change to

C(2) = Co(2®) + 2C1(2Y). (4.35)

Note z in the odd term where we had z~!. This is the convention chosen by [VK]. It is just as
good as ours. The zeroth component of Coyg becomes e(—1). It multiplies x(1). But I am afraid
that in later chapters you would forget (I would too) this convention for ¢, different from x. So
we keep the same even-odd decomposition of ¢ and x, yielding paralle] decompositions of C(z)
and X (z) — and requiring the delay.

Problem Set 4.2

1. Find Xeven(2) and Xogq(z) when X (z) = 1 4 2z7% 4 z710. Verify that Xeven(z?) = J(X(2) +
X(—2)) and Xo4(z?) = §(X(2) — X(—2)). The odd definition involves an advance!

2, Express the z-transform of 4+ 2(] 2)x in terms of X 4g and/or Xeuen-
What operations on x would produce the vector whose transform is X (z%)?

3. The phases Cy, €|, Dy, D are all time-invariant, so they cormmute with delays. Does it follow

[1 dciay][g:: ﬁl]=[§ﬁ gll][l delay ]?

4, Polyphase Representation of an IR Transfer Function

Let H(z) = j——= where 0 < a < 1. Its impulse response is k(n) = a* for n > 0 (and zero
for negative n). The phases are k(7)) = (1, a2, a*, ...} and B(n) = (@, a%,a%,...). The
z-transforms are Heven(z) = 1/(1 —a2™") and Hogy(z) = a/(1 —a’z~"). This method is very
cumbersome. One has to find the impulse response A(n}, then its even and odd pans Aeyeq(n)
and haq(r), then the z-transforms.

An alternate method is to write H () = —— directly as H(2) = Heen(z?) + 27" Hoga(z?).
The denominator must be a function of z%. So multiply above and below by 1 + az™*:
1 l+azr'  1+az”! 1 L a

H = = = .
@ l—az ' 14+az7! 1-ag?z72 1-g2z? +z 1—-a2z—

This displays Heven{z) and Hoq(z). An Nth order filter can be factored as a cascade of first-
order sections, and this method applies to each section,

(@Llet H() = FEET ]' - Factor H (2} into two first-order poles. Find the polyphase com-
—gzT 4T

ponents of H{z).

(b) Let H(z) = I'T’%?Lr’—?;, What are its polyphase components?

5. For M = 4 channels, we want the four polyphase components of H(z):
H(2) = Ho(z") + 27 By (") + 272 Ha (2" + 2 M (2).
(a) What polynomial multiplies | — az~' to produce 1 — a*z~%?

(b) Find the four components for .—L=y and |I—+§2::::?z_—2?'
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6. If H is a symmetric filier, how many of its phases are symmetric filters?

7. Let H(2) = 14227 +327 2+ 42 +477*+ 3773 +22 754z~ Find the polyphase components
Hoven(2) and Hoz5(z). What is the relation between H,,., (z) and H,z4(z) for antisymmetric
filters of even length and symmetric filters of odd length?

8. What are the two polyphase compenents of a symmetric halfband filier? Generalize to an M-th
band filter.

4.3 Efficient Filter Banks

Let us repeat the key idea of the polyphase decomposition. The input is x, the filter is C, and we
intend to downsample Cx. We want the even powers of z in the product C(2)X (z):

even powers in C'(2) times even powers in X (2)

even powers come from odd powers in C(z) times odd powers in X (7).

The polyphase decomposition is exactly this separation. Even times even is Cp(z2) Xo(z2). Odd
times odd starts with ¢(1)z~" times x(1)z™*. The product e(1)x(1) enters Cx(2) because indices
add. Then Cx(2) after downsampling is v(1). Since ¢(1) and x(1) are the zeroth components
of the odd phases, we need a delay to put their product into v(1). The algebra with X(z) =
XoH + 7' X1 (@) and C@) = CozH + z7'Ci (2D is

(CX)(2) = Co2)Xo(zD) + 272C1{ZD X1(z)

(CX)(2) = Colz)Xo(2) +27'C1(2)X1(2). (4.36)

We reached this answer by filtering and then subsampling (the step when z2 becomes z). But
now we see a better way. Sample first 1o get Xo = Xeven and X| = Xoq44. Filter those separately
(and in parallel) by €, and C,. Then combine the outputs with a suitable delay — the step down
on the right:

Xo(n)
Polyphase x() 12 Co
with 2! xi{n—1} z”!
Delay 12 C v — 1)

In this polyphase form, the filters Co and C) are half as long as €. The output can be com-
puted twice as fast, if all operations are done at the same speed. We could also use two cheaper
low bandwidth processors, both working full time. They do % multiplications and additions per
unit time instead of N. By downsampling first, we reduce the input rate to the filters. The band-
width is halved.

Example 44. The averaging filter in its direct form computes %x(()) + ]i"‘(_ 1). Then it sits idle
for one clock step, before computing 3x(2) + 3x(1). The polyphase form has Heven and Hogq

multiplying separately by '5 They do one multiplication each, in parallel. An easy-to-write code
will execute the polyphase form.
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Polyphase for Filter Banks

The polyphase idea extends from one filter to a bank of filters. The direct form of the analysis
bank does the downsampling last. The polyphase form does the downsampling first. In the block
diagram of the filter bank, the decimators move outside the filters. We can write C and D or Hy
and H; for the Jowpass and highpass filters (0 and 1 do not mean even and odd!):

L iy - votn)
Direct x{(n)
12 vi(n)
Xo(n)
Polyphase  *{() 12 —— vo(n)
with z_l xn=-1) Hp(z)
Delay 12 L v (n)

The polyphase matrix multiplies Xo(z) and z~' X,(z) to produce Vy(z) and V; (2):

Volz) Coz) Ci(2) Xo(2) Xolz)

[ Vi(2) ] = [ Do) Di(2) ] [ X, (2) ] =Hp(@) [ X0 @) ] 37
This defines and displays H,(z). For FIR causal filters, the kind we expect to use, the polyphase

components are polynomials in z~!. When the input x is also causal, the outputs are causal.
Another point about notation. The indices in Xp and X, refer to even and odd. The indices in
Voand V; refer to the two channels. This is normal for matrix multiplication, when H;; multiplies
X ; and contributes to V;. Rows of H ;(2) go with channels, and columns of H ,(z) go with phases.
In an M-channel bank, { is the channel index and j is the phase index in H;;(z). Then V; is

the output from channel £, and X ; is the jth phase of the input. We often reorganize a filter bank
into its polyphase form.

Example 4.5. Average-difference filter bank in polyphase form.

The averaging filter Hox(n) = 1x(n) + 3x(n — 1) has polyphase components Hoeven =
H, odq = 1(identity). The differencing filter H\x(n) = Jx(n) — Ix(n — 1) has components
Hyeven = 31 and H| ogq = —1I. Note that Ho(z) and H,(z) are linear but the polyphase
matrix is constant — typical of a block transform:

_| Ho@ Hau@ |_
H,,(z)—[ Hio(z) Hn(2) ]_[

Bt —
|

B et}

1

Example 4.6. Four-tap filters yield two taps for each phase. The even phase C,y.p has two
coefficients ¢(0) and ¢(2). The odd phase has Coqg = €(1) + ¢(3)z~!. The same pattern holds
for D). The polyphase matrix for the filter bank is
-1 -1
Hy(2) = [ c@) +c@)z™t  e(l) +e(3)z ]

dO) +d@)z”"  d() +d3)z”! (4.38)
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Even is separated from odd. This reflects what happens in the filter bank, when Cx and Dx are
downsampled:

vo [_| (U2Cx | _| Coen Coms 1 Xeven
i | T (42Dx | T | Peen DPoga delay Xodd

In case you like matrices, we are going to write the time-domain filter bank matrix in three
ways. Downsampling is included in all three! First comes the matrix Hy = H girec; that multiplies
the input vector x in the direct form:

c(3) ey e(l) e
3y 2y el) 0

Direct H, = R (4.39)

d@3)y 42 41 40
a3y d@2) 4y 40

Downsampling has removed every other row. That leaves this “square” infinite matrix. Each
column is completely odd or completely even.

For the second form we rearrange the rows of H,. The highpass outputs are interleaved with
the lowpass outputs, both downsampled by 2. This produces the block-diagonal form (or block
Toeplitz form) Hy = Hyocx:

e ¢ 1) O

di3) d2) d(1) d0)
€3 @) e} <0
d@) d@y 41 40)

Block H, = (4.40)

Your eye will divide that matrix into 2 by 2 blocks. It is like an ordinary time-invariant constant-
diagonal matrix, but the entries are blocks instead of scalars. The main diagonal block corre-
sponds to the constants in the polyphase matrix. The subdiagonal block produces the z~! terms.
There are only two diagonals because the phases of C and D have swo coefficients, The original
C and D had four coefficients.

The third form is the polyphase form H,,. We are still in the time domain. For this third form
we rearrange the columns of the direct form;

c(2) ¢(0) ¢(3) (1)

c(2) ¢(0) c(3) ()
Polyphase H, = _ o ) = [ f)(; g]l ] (4.41)
d(2) d() d(3) dQ)

d(2) d(0) d(3) d(1)
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When the columns are rearranged, the vector ¥ must be rearranged. Hete x.,., comes above
xoqd(delayed). The transform of the time-domain matrix H , is the z-domain polyphase matrix
H,(z). This 2 by 2 matrix of filters becomes a 2 by 2 matrix of functions.

The block form Hy, is an infinite matrix of 2 by 2 blocks. The polyphase form H, isa 2 by 2
matrix of infinite blocks. Each block is a time-invariant filter. Either form leads by z-transform
to the 2 x 2 polyphase matrix k,(0) + 27k, (1):

Polyphase _| e@®  ed) 1| €@ e(®
matrix HP(Z)‘[ d© d(1) ]“ [d(Z) d(B)] (442)

Relation Between Modulation and Polyphase

To produce two vectors from x, one way is by polyphase. The parts Xeven and x 44 are half-length.
The other way is by modulation. Both x and x4 are full length (therefore redundant). The
modulated vector X o reverses the sign of odd-numbered components:

Xmod(n) = (—=1)"x(n) and Xpmo(2) = X(-2).
In the frequency domain, —1 = ¢'™ and w is modulated by 7 -— which explains the name:
Xmod(@) = X{w+ 7). (4.43)

The vector Xmes appears naturally when upsampling follows downsampling. Remember that
= (12)(] 2)x is the average of x and Xyyoq:

u =3+ Xmoa) = (... ¥(0), 0,x(2),0,...). (4.44)
In the z-domain, the same fact gives the formula we use constantly:
Uz) = §[X(2) + X (-2)).

For downsampling and upsampling by M, the frequency modulation is by multiples of 2x /M.
The z-domain equivalent is multiplication by W = ¢™2"/_ There are M terms X (W*z). We
continue with M = 2 terms, X (2) and X (—z2).

The exira term represents aliasing. This modulated signal can overlap the original signal (in
the frequency domain). If it does, we cannot recover x from z. Now place this step (1 2)(] 2)
into a complete filter bank:

Ho — 42 {12 |~ Fo
H |— 42 | t2 |+

The transtorm of Hyx is Ho(2)X (z). When this is downsampled and upsampled, its alias
appears in 3(Ho(z)X (z) + Ho(—2z)X (=2)]. Multiplying by Fo(z) gives the output from the top
channel. The lower channel is the same with 0 replaced by 1. The final output is the sum of

channels:
2@ = 1A F:(z)][ ey ][ ey | (4.45)
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This is the 2 x 2 modulation matrix Hy(z). It contains Ho(z) and H, (z) along with their aliases.
The transpose of Hu(2) is also called the alias component matrix.

A perfect reconstruction filter bank has to avoid aliasing (and other distortions). There is no
aliasing when the combination Fo(z) Ho(—2) + F1(z)H;(—2z) is zero. Section 4.1 presented the
synthesis filters Fo(2) = Hi(—2z) and Fi(z) = —Hy(—2z) that cancel aliasing.

Now turn to polyphase, the separation into even and odd phases;

H(z) = 3[H@ + H(-2)] + }[H() — H(-). (4.46)

The first bracket is even. Replacing z by —z leaves it unchanged. The second bracket is odd.
Replacing z by —z reverses its sign. Therefore (4.46) must be the polyphase decomposition
Heven(2%) + 271 Hoaa(2?):

(Heven(z?) z7'HoaaGD] = 3[H@ + H(=2) H(z2) — H(—7)]

= [H() H(—z)][ L ] *.47)

This connects polyphase to modulation. For one filter H, and H,, have one row. For a bank of
filters H, and H,, are square matrices. A 2-channel analysis bank has equation (4.47) for Hy in
the top row, and the same equation for H in the lower row:

Hyeven(z?) Hy odd(z?) [1 [ H@ H-[1 1 @48
Hieven(z?) H| 0dd(@®) T2 B Hi-2) || 1 -1 |

Theorem 4.4  The polyphase matrix H, is connected to the modulation matrix H,, by a 2-
point DFT and a diagonal delay matrix D(7) = diag(1, z7V).

This pattern extends in Section 9.2 to a bank of M filters. Each filter has M phases, and it
has M medulations (by multiples of 25 /M). The phases are associated with time shifts, and the
modulations are frequency shifts. So the DFT connects them.

Problem Set 4.3

1. From H(2) = Hevwen(2%) + 27 Hoaa(2%). find the corresponding formula for H(—z). Write the
two equations as

[H(z) R{(~2)]=[Hewen(z®) Hoa(z")] 2! "N E
Identify that last matrix and verify that you have inverted equation (4.48). What is H,,(z) in
terms of H,(z)?
2. WH,(z")H,(2) = 2 show from (4.48) that HT (z~") H,(z) = 1.
3. Find a new example of matrices H,,(z) and H,(z) for Problem 2.
4. Write down the equations for M = 4 that are analogous to (4.46)—(4.48).

Problems 5-11 develop an important example of biorthogonal filters.

5. The upper channel has responses Hy(z) = 1 and Fo(2) = % +z7'+ %z—z = %(] +z7 12,
Follow the signals x{»n) = (—1)" and &(n) through this channel by plotting (1 2)(} 2)Hex(n).
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10.

11.

12.

13.

(—n" . . . b(n) .

Plot the output wo(n) = Fo (T 2}(} 2)}Hyx(n) on top of these inpuis. Describe the output
from this channel with any input x{n): The odd wo(2k + 1) are and the even wo(2k) are

. The lower channel has responses H((2) = Fy(—z) = % —z 1+ %Z-I = %(1 —z7Y%% and

F\(z) = —Hy(—z) = —1. Follow the same two inputs (—1)" and &(») through this channet by
ploiting Hx{n) and wy(n) = F {(12)(| 2)H x(n). Verify that the sum of outputs wo(n)+w, (n)
is¥(n) = x(n—1). In words, the output w| (1) from the lower channel is forn =2k+1
and for n = 2k for any input x(n).

. Verify the perfect reconstruction condition on Fp{z) Hy(z) + F,(z)H,(z) for this filter bank.

What is the delay £? What is the product filter Py(z)? Find the centered product filter P(z),
which is halfband.

Find the modulation matrix H,(z) for the analysis bank. Find the synthesis matrix F,,(z),
remembering the transpose. Compute the product F,, (z) H,,(2).

. Reverse the filters in the upper channel by Ho(z) = § + 2z~ + 1272 and Fy(z) = 1. Follow

the same signals x{n) = (—1)" and x(n) = &(n) through this new channel.

Construct the corresponding H\(z) = Fa(—2) and Fi(z) = —Hy(—2) and follow the two
inputs through the lower channel. Verify that the outputs wo(n)+w) (n) reconstruct the impulse
x{n). Certainly Fo(z)Hp(2) + F1(z) H\(z) is the same as before (still PR). The halfband filter
P(z) = $z+ 1+ 427" was factored into P(z) ¢ 1 and then 1 ¢ P(z). Which filter bank factors

P(z)into (1 +z71)/~/2 times (1 +2)//27

Big question: Is the more regular filter % +z7 4 -;-z‘z better in analysis (Hyg) or in synthesis
(Fo)? The output wy should be a “good but compressed” copy of x.

Show that the linear signal x(n) = n goes entirely through the lowpass channel. The highpass
channel has Hx(n) = __. The constant signal x(n) = 1 also goes through, so this filter bank
{still from Problem 5) has accuracy p = 2.

Explain the equivalence of these representations before downsampling:
Foln) x(n) — ¥o(n)

x{n) z—l| H,(z%)
yi(n) —y(n)

‘ o[ OH@ ] [ Ho(z)  Ha@) 1
In matrix notation this 13[ Hi2) ]—[ Ho@  Hy(2d) ][ ! ]

Explain the equivalence of these representations including downsampling:

Yolm)

x(m) 12— wm)
Z_I‘ Hy(@) »iin)
12 —v(m

127
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14,
15.

16.

17.

18.

4.4

The reader can anticipate what is coming. The polyphase form above was for the analysis bank,
with downsampling. The same ideas apply to the synthesis bank, with upsampling. The ex-
panders (1 2) will again move outside the filters in the polyphase implementation. This time

Chapter 4 Filter Banks

Xeven(t)
x(n) 42 — vo(n)

! xatn =1 | B
42 — vi(n)

Warning for downsampling by 3. The polyphase components when M = 3 are €, C;,
C; and Xy, X, X;. We want the component Yy of the product, because Y and Y- are lost in
downsampling. That component ¥y does not involve C| times X ;. Multiplying z ' by 2z~ does
not give z=>. The exponents 0, 3, 6, , .. come from C; times X, and C, times X; (and also Co
times X). To get z~* in the product, we multiply z~' by 272 or 2% by z =%

Yo (2%) = Co(2) Xo(2®) + 272 Ci2*) Xa (2% + 273Ca(2) X ().

Then replace z* by z to find the transform of (| 3)y = (§ 3)Cx.

We save this pattern for a later discussion of ({ M}, It uses “Type 1 polyphase’”” components
Co, €1, Cz. By defining Type 2 components Ry, R(, R; we could achieve that R; multiplies
X,. (The R’s are a permutation of the C’s.) Our immediate interest is restricted to () 2).

Write down the formula for ¥y(z*) that corresponds to equation (4.46). The polyphase com-
ponents of C are Cy, C,, C;.

Show that X, (2} is the z-transform of the downsampled vector (| 2)x. What vector is trans-
formed to X 4(z)?

Write H ,(z) in terms of Hy(z) for these filters of lengih N + 1.
() Hi(z) = Hy(—z) (b) Hi(2) = Z_NHU(Z_I) ©) Hiz) = Z'NHU(—Z_I)-

Find the analysis filters H,(z) and H,(z) for the following polyphase matrices:

[ 14277 =772 2-z7!
a. Hyla) = | 73 1+2z7 ' +272
[ 14272 1477 2 1+2z72
b. HF(Z)_ ] 1 ____z—l 2+Z_I ] [ 1 —Z_I ‘_Z_3
B
_ [} L3 1 0 C2 52
w5 300 2105 1]
[ |
oA
d‘ HP(Z} = -3 147!
| 2 2
(1] L2z 0
CH (D) = 2tz _
c p{ ) | 1 _] ] [ 0 %11-

For each system (a-e} in Problem 17, find the modulation matrix H,,(z).

Polyphase for Upsampling and Reconstruction

“outside”™ means after the synthesis filters.
We start with one Rlter called G, and move the upsampler;
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un)
Direct vin) — 12 G [—wn)
Goag 12
Polyphase  v(n) — — wi{n)
Geven T 2 Z_

The polyphase form is more efficient, because the half-length filters Gy = Geyen and G| = Gogg
receive input at the slow rate (low bandwidth). The direct form unnecessarily doubles the rate
by (1 2) before the filter.

It is always important to verify formulas in the z-domain. In the direct form, npsampling
produces U (z) = V(2?). The only powers to enter U (z) are even powers, because upsampling
puts zeros in the odd components. Then the filter produces W(z) = G(z)V(z?). In this multi-
plication, even powers in G yield even powers in W. The odd phase of G multiplies V (%) to
give the odd phase of W. That is why polyphase works in the synthesis filters. Even times even
is separated from odd times even:

2
Wi =l z"][ ‘:;;::((5)) ] =[1 z‘ll[ Cée::;'((:z)) ]V(ZZ).

Suppose the filter G is a simple delay. Then its Type 1 polyphase components are G, = 0 and
Gogg = identity. The output from this polyphase equation is correct— a delay of 1 2v.

Example 4.7. Suppose G has four coefficients g(0), g(1), g(2), g(3). In the time domain, G is a
constant-diagonal matrix. When upsampling acts before the filter to produce G(1 2), it removes
columns of G. (Just as downsampling removed rows of C.} The time-domain matrix in direct
and inefficient form is G(1 2):

g0) 1 g0
gl) g0 0 &)
G112 =] g2 g} g® 1 =| g2 g0

g3 g2 gy g0 0 g3) g

(4.49)
Now comes the polyphase idea. Each row is either all even or all odd. The even rows (rot
columns as for C) combine into Ggpey. The odd rows combine into Goyy. Each of those is a
constant-diagonal matrix (a time-invariant filter!). When they act separately and simultaneously,
the process is more efficient:

£
g2y g

Geyen _
(“’[ Gost ]‘ g(1)
23 g(l)
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In this polyphase form, upsampling comes after the two filters. The odd phase is delayed before
the even and odd outputs are combined:

G(12) becomes [I delay](} 2)[ ‘(;;V:d ] (4.50)

This is the polyphase form in the time domain. Tts transform is the polyphase form in the z-
domain. We are using the second Noble Identity on each phase separately:

direct ($2)Geven(z’) = Gewen(2)(12) polyphase

Synthesis Bank: Direct and Polyphase

Now put rwo filters into a synthesis filter bank. The filters will be G and ;. Remember that
synthesis has two input vectors (at half rate) and one output vector (at full rate). The direct form
and the pelyphase form are (with our present conventions) as follows:

vo(2n)
voln)—{ t2 Go
Direct vy (20) — X(n)
vi(n)—  t2 Gy
voln) — +2
Polyphase G,(2) — X(n)
vi(n) — 12 z

This.is a 2-channel synthesis bank. In the z-domain, the polyphase matrix G,(z) multiplies the
inputs Vp(z) and Vi (z). The indices O and 1 are now channel numbers. The extension of equation
{4.41) to two signals coming through two filters Gp and G will produce G ,(z):

‘* -1y] Go even(z) Gy, even(z?) Vo(z*)
Xy =1 z77] [ G, odd(zz) G, Odd(zz) ] [ Vi) ]
Notice! In the analysis polyphase matrix H,(z), the lower left entry was Hyp. Now Gy is at
the lower left. Where we had the even part of H;, we have the odd part of Gy. The channel
index always comes before the phase index, and this forces a transpose in the polyphase synthesis
matrix. Other authors agree with this convention — a necessary evil.
Inthe M by M case, H;; is the jth polyphase component of the filter in the ith channel, So
is G;;. But the entry in row i, column j of the synthesis matrix is Gji.

450

Useful convention for synthesis: Type 2 polyphase. Vaidyanathan delays channel 0 instead
of channel 1, at the end of the synthesis bank. Therefore he reverses the two polyphase com-
ponents, This produces the Type 2 polyphase decomposition, where 1 means even and O means
odd. We write F rather than G 10 keep this type separate:

Type2is F(z) = Fi(z) + 27 Rt (4.52)
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In the Type 2 polyphase matrix for two filters, the delay z~! goes with 0:

Ton =1 Foo(z>)  Fip») Vo(z%)
X@) =1z ”[ Foa@)  Fia(@) ][ Vi(2) ] @53)

We just reversed [1  z™!]into [z~! 1], and reversed the rows of the marrix. The product is
exactly the same. The only difference in the bleck form is the new position of the delay, now in
the upper channel:

2 — 2
Type vo(n) F,) t

Type 2
Polyphase vi{n) — ype 12 x(n)

-1

4

We will follow this arrangement: Type 2 for synthesis and Type 1 for analysis. The main point
is that upsampling follows filtering. The phases of the filters are shorter than the filters them-
selves. Those subfilters operate simultaneously to produce separate phases of the outputs. Then
upsampling with delay assembles ¥. We draw an M-channel synthesis bank in both Type 1 and
Type 2 polyphase form:

— M = —] M= -
ENeSY g Al s F,(2) Ll pr
Type 1 1 Type 2 .

— T M ¥

The M polyphase components of a single filter H are
Typel: H(z) = Goz")+271Gi@M) +- +77M-DGy ™)

Type2: H(z) = Fy1(@M)+27 Fua(zMy 4. 4 27 M-V Ry (M)

When the bank has M filters, each with M phases, we have an M by M matrix. This is the
polyphase matrix containing M? time-invariant filters,

Perfect Reconstruction

One reason for introducing the polyphase form is efficiency. The analysis bank and synthesis
bank are faster, when (] 2) and (1 2) are moved outside, The even and odd subfilters that appear
inside are about 50% sherter. So they can be executed more quickly.

The other reason for polyphase is to simplify the theory. Underlying the whole book is the
goal of perfect reconstruction. We have to connect the synthesis bank to the analysis bank. One
must be the inverse of the other, if the signal ¥ is to agree with the input x. When pure filters
connect to pure filters, the products are pure filters — and the z-transforms tel] all.
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Since the analysis bank is represented by a matrix H,(z), and the synthesis bank is repre-

sented by F (2}, we hope very much that inverse filter banks are associated with inverse matri-
ces:

Perfect reconstruction should mean that F p(2) = H;l (z).

We note that delays are allowed and expected. The output signal may be ¥(n7) = x(n — ). Then
the system delay is . In the z-domain this is F,H, = z¢~V/2],

The direct connection of analysis bank to synthesis bank has the decimators and expanders
inside. This produces the standard QMF bank:

Yo Yo Ho Wo
Hy 42 12 Fa

x(n)— — X(n)
H, {2 12 F,

But the standard order 1s inefficient. The polyphase order is much better, with (| 2) and (1 2)
moved to the outside. We draw the polyphase form with Type 2 leading to F p{z). The final delay
is moved from channel 2 in the Type 1 form (row 2 of G,) to channel 1 in the Type 2 form (row
1of Fp):

X 12 12
2! HP(Z) Fp(z) !
12 t2 X

Polyphase is simpler and better because H, and F, are now side by side. Those are matrices
coming from pure time-invariant filters — the even and odd phases of two analysis filters and two
synthesis filters. In between would come compression or transmission. With nothing happening
between, F,H , disappears into I.

Example 4.8. The simplest analysis bank has Hy(z) = 1 and H,{(z) = z~'. Their polyphase
components are Hy = 1 and Hp = O, then Hyp = Oand H); = 1. The polyphase matrix is
Hy=1

The corresponding synthesis bank has Go(z) = z~! and G(z) = 1 in the two channels. The
Type 1 polyphase components of 2! are Gog = 0 and Gg; = 1, in the first column (not row!)
of G,. Then Gy = 1 and Gy, = 0 go into the secend column. These enter the synthesis matrix
G, and in this example the transposing has no effect:

_| Geo G |_| O 1
Gp_[Gm Gn]_[l O]‘ (4.54)
When we account for the delays in the lower channel, the final output is X¥(n) = x(n — 1). The
QMF bank is a simple delay chain, with perfect reconstruction.
Now use Type 2 for synthesis. This reverses the rows of G, to give F,, Thus F, = I.

Starting from the two synthesis filters, z~! has Type 2 components Fyo = 1 and Fy = 0. The
second channel yields Fip = 0 and F; = 1 in the second column (not row!) of Fp:

[ Fo Fo]_[1 0
F,,_[Fm F“]_[O 1]. (4.55)
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You see the advantage of the second form, which is the Type 2 form F,(z). The perfect recon-
struction from this delay chain is reflected in

F ,, @ Hp @=L (4.56)

That is the important equation in this section. The example itself is a terrible QMF bank. It has
delays but no genuine filters. However the conclusion remains correct when H ,(z) and F,(z)
are polynomials in z~', from FIR filters. That is the whole point— that useful matrices can be
inverses of each other and both can be polynomiais.

The direct and polyphase forms of a QMF bank are externally equivalent. The observer of
x and ¥ does not notice a difference. But the efficiency is improved and the theory is simplified.
The theory of perfect reconstruction is a perfect matrix equation:

Theorem 4.5 QMF banks give perfect reconstruction when F, and Hy, are inverses:
Fo(o)H () =1 or Pt

H (2} is Type 1, for analysis, and F(z) is Type 2 transposed, for synthesis.

Example 4.9. In the average-difference filter bank all filters have two taps. Their even and
odd phases have only one tap. Therefore the polyphase matrices are constant. But they are not
diagonal, as they were in the simple delay chain. The analysis polyphase matrix is

Hp(z)='5[ : _i ]

The synthesis matrices are transposed as always. F, has “even” in the lower row:

Gp(z)=|: i _: ] and Fp(z)=[ i _: ] and F,H,=1

Problem Set 4.4
1, Express X(z) = Xo(z®) + 27" X ((z?) as a sum x = (1 2)xp + () in the time domain. What
are the coefficients xy(n) and x;(n) in the polyphase decomposition (Type 1} in terms of the
original x{mn)?

-

The next three exercises are the synthesis bank equivalents of the time-domain analysis
matrices H;, H,, H,; in Section 4.3.

2. With Gilter coefficients c(0), ..., e(3) in G, and 4(0), . . ., d(3) in G;, write down the infinite
time-domain matrix G, for the synthesis bank. The analysis bank had the lowpass (| 2)C
above the highpass (| 2)D). The synthesis bank will have Gy{1 2) and G, (1 2) side by side.
Each of these parts looks like equation (4.49).

3. Rearrange the rows of the direct matrix G in the previous exercise to give the polyphase ma-
trix G, in the time domain. This should be a 2 by 2 matrix with time-invariant filters C,y,p,
Coads Devens Dogy 35 the blocks (C = Gy and D = G)).

4. Rearrange the columns of the direct matrix Gy to produce an infinite matrix G, of 2 by 2 blocks.
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5. Draw a delay chain with M channels. Then Ho = 1, H) =z, ..., Hy_| = 27~ Jeads
to what matrix H,(z)? Choose the synthesis delays to reconstruct ¥(r) = x(n — (M — ).
Create the Type 1 matrix G,(z) and the Type 2 matrix F,(z). Check F, H,, = I.

6. Establish the relation between G (z) (modulation) and G, (z) (polyphase Type 1).
- —-L
7. 1 G (2)Hn(2) = [ 2 . - 21_? ] show that G,(z) H,(z) = [ Z_E‘ “ ] with
! = 2L + 1. The matrices G,. and G, include a transpose. Then F, includes a row exchange
for Type 2, and F,(z) H,(2) = z 1.

8. Find Fy(z) and F(z) for synthesis from the analysis polyphase matrix:

[ 2-4z! 1-z1
a. Hy() = | 3477742772 1 ]
[ 2 = z' 0 € 5
b‘H"’(Z)__—sz (.‘2][0 1][—5; cl]
B l+::‘ 1
o Hyg=| > a]
L 77 Z
[ 142! 0 1 1
=| =T
no-[ 5200 2]
9. Find the polyphase matrices H,(z) and F ,(z). Is this system PR?
x(n) -2
Z [ 12 iy TZ
— A
[ -1 _ || -1 4 X
22 P2 e

4.5 Lattice Structure

A filter bank is represented by its polyphase matrix. When we know the filters, we know the
matrix H,(z). In the opposite direction, we can choose a suitable i »(z}—often as a product
of simple matrices. Then the corresponding filter bank is a “lattice” of simple filters, easy to
implement.

Here is a class of polyphase matrices to use as examples. They are linear in z—!. One factor
has the coefficients 1, 1 and 1, —1 from the Haar filter bank — averages and differences. Another
factor has coefficients a, b, ¢, d that we are free to choose — as long as the matrix is invertible.
Between those factors is a diagonal matrix with a delay in the second channel:

H,,(z)=[ } _w} ][ 1 - ][i 3 ] 4.57)

e 1[a 5771 11
o[ T1 0 4) e

First point: H ;‘ contains an advance {denoted by z). No problem. Good causal polyphase ma-
trices have anticausal inverses, as this one has. The main point is that H;‘ is a polynomial {FIR
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not IIR). Add one delay to the whole synthesis bank (multiply by z~') and it becomes causal:

- 1 5 7' 1
z'Hp‘(z)=E[‘; d] [Z 1][1 _1] (4.59)

When you multiply out the factors in H,(z), you see the possibilities:

(4.60)

-1 p4dz!
Hp(z)=[ a+cz +dz ]

a—cz”! b—dz!
The top row holds the even and odd phases of the lowpass filter C;
CD=a+bz"+ez72+dz? has phases a+4c¢z™' and &+dzt.
The second row is the polyphase form of the highpass filter D:
D)=a+bz' —cz7? —dz™ hasphases a—cz™' and b-—dz7).

We design these 4-tap filters by choosing a, b, ¢, d. They can have linear phase or orthogonality.
Our 2 by 2 matrix can be symmetric or it can be orthogonal:

Linear phase filters (symmetric-antisymmetric). Choosea =d and b = ¢.
The lowpass filter € has coefficients a, b, b, a. The highpass filter D is antisymmetric, with co-
efficients ¢, b, —b, —a. For the polyphase matrix, just substitute d = @ and ¢ = b:

(4.61)

-1 -1
Linear phase  Hy(z) = [ a+bz b+az ] .

a—bz! b—az!

How do you recognize the symmetry of C (or Ho) from its phases in the top row? One phase
is the flip of the other phase. Then the whole filter a, b, b, a is the flip of itself, which makes it
symmetric.

The synthesis filters are also linear phase. The underlying reason is that the inverse of a sym-
metric matrix is symmetric. Now change to orthogonal,

Orthogonal filter bank Choose d = a and ¢ = —b and normalize.

The second row [¢ d] = {—b a] becomes orthogonal to the first row [¢ #]. Both rows and
both columns have length +/¢2 + b2, Each of the three factors in H »(2) is a unitary matrix, after
dividing by that length. The inverses come directly from the conjugate transposes:

a b1 _ 1 a —b
—b a Y ) a

[l z! ]_] = [l ;‘:]T if Jz] = 1.

We use the word unitary rather than orthogonal because z is complex. The inverse of a unitary
matrix U is T . The first matrix is real, so conjugating had no effect. The second is diagonal,
so transposing had no effect. We always do both.

Notice that [z] = 1. The inverse of z = ¢™* equals the conjugate: z~' = ¢’ = 7, Sec-
tion 5.1 will introduce the word paraunitary for H p(2), when it is a unitary matrix on the circle
[z} = 1. Our present example is paraunitary.
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Multiplying the three matrix factors gives H,(z), withd = a and ¢ = —b:

(4.62)

— h-l -1
Paraunitary polyphase matrix H,(2) = § [ 2+ gi_, giz;“ ]

The impulse response shows the difference between linear phase (earlier) and orthogonal (now),
The lowpass C(z) comes from the first row, where @ and —b give the even coefficients. The
coefficients in & + az~! go with the odd powers z~' and z~3:

C@)=a+bz' —bz2 +az™,
The highpass response from the second row is
D) =a+bz" ' +b772 —az™3.

We lost symmetry and gained orthogonality. One part of orthogonality is that (a, &, —b, a) is
perpendicular to (@, b, b, —a). But this is not all. Another part is that (a, b, —b, a, 0, 0) is per-
pendicular to (0, 0, @, b, b, —a). We have to consider those double shifts, because they enter the
time-domain matrix — two filters € and D with downsampling:

2)C

H=[ 12DD ]: (4.63)

=
3
o
e
R

Linear phase and also orthogonal: Not possible for length greater than 2.

Later we prove this fact in general. Linear phase FIR pairs that are also orthogonal can have
at most two nonzero coefficients in each filter. They are just variations on the average-difference
pair. This is a one-step improvement over single filters, which can have only one nonzero coef-
ficient. An allpass FIR filter is a delay, with one term C(z) = cz~%.

Lattice Structures

The orthogonal bank will now be more general than this example. It will have more coefficients.
But H,(z) can still be produced from simple factors, They will be cascades of constant matrices
and diagonal matrices. The filter bank has a highly efficient lattice structure, We can see already
the form of our a, b, ¢, d factor in the two important cases of linear phase and orthogonality:
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1
Linear Phase K a b 1 k b
=a withk= —
a=d, b=0 K b a ko1 2
1
Orthogonal a b 1 kK b
asd. bemc =a withk:;
St -b a -k 1

Each lattice involves only one multiplication when implemented properly (Problem 7).
There is also a single overall multiplying factor, collected from all factors in the cascade. The
numbers & can be design parameters. For any &’s, a cascade of linear phase filters is linear phase,
A cascade of orthogenal filters (including —k) is orthogonal. We now study a general lattice built
from simple orthogonal factors,

Note. The lattice structure gives long orthogonal filters very easily. They can be good filters,
But the k’s enter H(z) in a complicated nonlinear way. For the design step, where filter char-
acteristics are optimized, most engineers choose simpler parameters like the coefficients f(n).

For the implementation step, the lattice has an important advantage. Often the coefficients
k(r) will be “quantized” —real numbers are replaced by binary numbers (finitely many digits).
In general, this destroys orthogonality. But orthogonality is not lost when implemented as a lat-
tice of simple filters. Each orthogonal factor is determined by a real number & (or by an angle ).
When £ or 8 is quantized, the factor is not exactly correct — but it is still orthogonal. Therefore
the whole filter bank remains strictly orthogonal.

We now intreduce a product of retation matrices and delay matrices. The rotation matrices
are constant, exactly as in our examples:

cos@ sind 1 %
R*[ —sin@ cos® :|=(:089|: £ 1 ] (4.64)

This matrix gives clockwise rotation through the angle 8. When cos é is factored out, it leaves
the number £ = tan &, We will think of the rotation matrix (orthogonal matrix) in terms of 8, but

we implement it with & to save multiplications. The delay matrices are used to delay the second

channel:

A(z)=[ (1} z(')‘ ] has determinant 7',

It is convenient to have an extra factor of —1 in the lower channel, The matrix diag(1, -1,
whichis also A (—1), accomplishes this. Then the product of £+1 rotations separated by € delays
is the polyphase matrix for the whole lattice:

Hp(2) = A(-DR A} Re— 1 A(2) -+ Ry A(R) R (4.65)
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The rotation R, is through an angle §;. The rotation Ry is through an angle 8. The determi-
nant is —z~¢, because of the delays and the sign change from diag(1, —1). Without the delays
in between, the product would be a single rotation through the total angle 3 8;. With the ¢ de-
lays, we have something much more important. It is essentially the most general two-channel
orthonormal filter bank with ! delays.

H (z) is the polyphase matrix of an orthonormal filter bank, because each factor is unitary.
We show this analysis bank in its efficient form, with the downsampling operators before the
filters. Ry comes first in the structure because it is the right-hand factor in H,(z).

cos o cos 9
) g4
x(n} 2 . see
IL 1 ><sin 6, ><sin B£
z —sin 8 -sin@
2 o e —H —l 'E
| cos8,, z c0s 6y [:.1

Figure 4.4: The lattice structure for H,(z) = A(—1) R, A(z) --- R, A{D) Ry

The factors cos @ that are removed give a multiplication by cos8; - - - cos &, at the end,
Note that Haar’s filter bank comes from one rotation with angle %:

11 1 | [ cosf sin® with 0= %
2L 1 -1 7| sing —cose mr=Y
Actually this is a picture of any polyphase matrix H,(z) at the particular value z = 1. The matrix

H (1) corresponds to zero frequency, because ¢ = 1. The response to direct current is always
the Haar matrix, when the lowpass filter has a zeroatw = .

Theorem 4.6  If Hy = 0 at @ = (which is z = —1), then the polyphase matrix has

171 1
.ﬂif,,(l):E[1 _1].

For an orthonormal filter bank the angles in the lattice structure add to &..

Proof: Hp has a zero at w = 7 when the sum of odd-numbered coefficients equals the sum of
even-numbered coefficients: £(0) — (1) 4 A(2) — ... = 0. This first sum rule means that at
z = 1, the even phase equals the odd phase:

Hoo(1) =hQ) +h(2)+--- = k(1) + h(3) +--- = Hy (). (4.66)

Row 1 of the polyphase matrix has equal entries at z = 1. Row 2 comes from the highpass filter
H,. This has the opposite property H; = O atw = 0. The odd sum is mirus the even sum. With
the right signs, H (1} is the Haar matrix in the Theorem.

Since this is exactly what we get in the product of rotations, when z = 1 and the delay ma-
trices become I, the total rotation angle mustbe 3 6; = %.

The 4-tap Daubechies filter in Section 5.2 has angles 3 and —1{5. Those angles add to .
Looking back at the start of this section, we realize that Haar followed by one rotation is actually
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useless. That second rotation angle must be zero! The sum rule in the top row of the lowpass
filter becomes @ + & = —b + a, which forces b = 0. The good angles are § and — &, not
and 0.

The Synthesis Lattice

The synthesis bank inverts the analysis bank. To invert the lattice, reverse the order of rotations.
The inverse A(—1)R¢ A(2) ... Ry A(2) Ry is the product of inverses in reverse order:

(Ho(2))" = REA(RT --- A" ()RT A(=1). (4.67)

The inverse of each rotation is the transpose: R™! = RT = rotation through — ¢. These constant
matrices are orthogonal. The inverse of a delay matrix is an advance:

1 0 - Vo
gy — La—lgy _
A ("’)‘"[0 z] and z7A (Z)‘[ 0 1]
Since H,(z) has £ delays, its inverse has £ advances. Multiplying each advance by z~! puts
! delays into the upper channel. The synthesis half has upsamplers last (this is the polyphase
form in Figure 4.5). An extra advantage is that we can add or remove rotations without losing

cos6 cos @
> -1 0

-sin 9'2 Z -sinﬁo 12 |
[ $in 0 .. - sing, 12 z

9 cosex a::oe.e0

Figure 4.5: Orthogonal synthesis bank in lattice form.

orthogonality. In contrast, the alteration of one filter coefficient 2z(n) is almost certain to destroy
orthogonality and also perfect reconstruction.
What is the synthesis polyphase matrix?

Lattice Coefficlents from Filter Coefficients

We now prove that any 2-channel orthonormal filter bank can be expressed in lattice form, with
rotations and delays. Thus the lattice structure is “complete”. Starting with H,(z) of degree ¢,
we find a rotation-delay that reduces the degree to £ — 1:

_ | costy ~sinf, 1 0 =
H”(Z)—[ sin & cosé, ] [ 0 ! ]H-" ). (4.68)

The new matrix H " (z) is still unitary for |z] = 1 and its determinant is £z-¢~1. So we
reduce the degree again. After £ steps we reach Hp(0) whose determinant is +1. It is unitary
for [z} = 1 and the only matrices with this property are constants. After properly accounting for
the matrix A{—1}) = diag(l, —1}, we have the rotation angle &, that completes the lattice.

Theorem 4.7 Every lowpass-highpass orthonormal filter bank has a polyphase matrix H(z)
of the lattice form (4.65),
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Proof.. The step (4.68) requires an angle 8; such that

cosf; sind [1 o "
[ —sinf, cos6, ]H”(Z)_[ 0 z! ]Hp (z). (4.69)

On both sides, the second row must have no constant terms. Then we can factor z~! from that
row and the reduction succeeds — we get the next matrix H¢~"(z) and continue. If H,(z) =
hp(0) + -+ + hy(d)z 7, the constant term on the left side of the equation comes from A ,(0).
The second row on that side must give

[ —sin6,  cosé |h,(0)=] 0 0 ]. (4.70)

This row vector that produces zero must exist if f,(0) is singular. The whole argument rests on
the fact that k|, (d)h ,(0) is the zero matrix. The key equation is ﬁ;H p=1I

(B 0) + -+ BL @2 [, 0) + -+ hp(d)z™] = L. (4.71)

The coefficient ki(d) h (0} of the highest order term must be zero. When two nonzero ma-
trices multiply to give zero, h,(0) and h,(d) are both singular. There exists a vector
[—sin&; cosf] that knocks out the constant term in the second row of (4.69). After £ steps
we reach a final rotation Rp and the lattice is complete.

Lattices for Linear Phase Filters

For orthonormal filters, Hy and H, have the same (even) length. One is symmetric and the
other is antisymmetric. For linear phase filters, those statements are not necessarily true, The
great variety of linear phase PR filter banks means a great variety of lattice structures, The

a b ] instead of
a

equal-length case copies the orthonormal case, but with factors § = [ b

k= 5 2]

Theorem 4.8  Every linear phase perfect reconstruction filter bank with equal (even) length
filters has a lattice factorization

H,,(z)=[ Lo ]SLA(z)SL_lA(z)-’-SIA(z)Sg. @.72)

The filter bank is a cascade of simple two-tap filters:

1 0 a; b o 1 k;
A(z)_I:0 z'l] and S;_[bi ai]—a,liki 1 ]

The proof is entirely parallel to the orthogonal case (Theorem 4.7). The implementation just
has a sign change. The number of lattice sections is half the length of Hy (and H,}. All factors
a; are collected into a single factor a = [] a;, for efficiency. And the two multiplications by k;
are further reduced to one multiplication (and three additions) in Problem 7.

What is not parallel is that linear phase allows further possibilities: unequal length and
symmetric-symmetric pairs. Here are the rules for PR with linear phase:
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Even length must differ by a multiple of 4. Hy = symm and Hy = anti.
Odd length must not differ by a multiple of 4:  Hy = symm and Hy = symm.

An example of the second type is in the “Guide to the Book™, with lengths 5 and 3:
$(—=1,2,6,2, 1) in Ho and 3(1, -2, 1). For symmetric filters whose lengths differ by 2, the
(complete) lattice factorization is

-1
H,(z) = D []5_,As(z) with Ak(Z)=[ . +;;_"; g2 l+1z" ] [ °(5; ? ] (4.73)

D is diagonal, and a practical system can have only B, # 0. This speeds up the implementation.
The FBI 9/7 system is an example that requires only two lattice sections.

The general case has a similar (but longer) factorization. The proof is also longer. Our pur-
pose has been to establish the main point: the efficiency and the availability of the lattice struc-
ture.

Perfect Reconstruction with FIR

We are interested above all in FIR systems. Then both H,, and F, have a finite number of terms,
from the finite number of filter coefficients. The crucial observation is that with well-chosen
matrices, the product of two polynomials can be a constant or @ monomial:

H'(9Hp@) =1

FUD H, () =21 are possible for matrix polynomials.
P P =

In the scalar case, 1 + Bz~! is a polynomial but 1/(1 4 8z~") is not. The reciprocal of a
polynomial scalar is not a polynomial. If an ordinary time-invariant filter is FIR, its inverse is
IIR. The only scalar exceptions are trivial cases (delays). The real exceptions are matrix poly-
nomials — which are polyphase matrices of filter banks. That is what this book is about.

The inverse of a matrix polynomial can be a matrix polynomial. We ask when,

Theorem 4.9  An FIR analysis bank has an FIR synthesis bank that gives perfect reconstruc-
tion if and only if the determinant of H ,(z) is a monomial cz™! with ¢ # 0.

Proof. The entries of (H,(z))™' are always cofactors divided by the determinant:

_ (J, i) cofactor of H,(z)
"~ determinant of H,(z)

s

The cofactor (the determinant without row j and column i} is certainly a polynomial. If the
determinant is cz ™' (one term only!) then the division leaves a polynomial: the inverse is FIR.
When this inverse H;‘ (2) is delayed by z ™, it becomes causal. This is F,(z). Itis the Type 2
polyphase matrix of the FIR synthesis bank.

The design problem is to maintain a monomial determinant ¢z~ while building an efficient
filter bank. For an M by M matrix the cofactors of H,{z) may have high degrees. The analysis
and synthesis filters generally have different lengths, The design problem is harder, but more is
possible. Cosine-modulated filter banks are winners,
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Efficiency of Lattice Structure

Consider a symmetric filter bank with length N = 2.J. The number of multiplications per unit
time is 4.7 using the direct form and 2J using polyphase. Additions are the same, with two extra
at the 2-pt DFT matrix.

On the other hand, there are J lattice sections. Each section requires 2 multiplications and
2 additions. Counting 8 and 8; in the figure brings the total complexity to 2. multiplications
and 2J + 2 additions. The effective complexity (at the input rate) is J multiplications and J + 1
additions.

Problem 7 discusses an alternative that uses 1 multiplier and 3 adders per lattice section. In
summary, the lattice complexity is approximately half of the polyphase complexity. The same
is true for orthogonal filters.

x(n} x(n) By

}2 Filter with length }2
-1 2J. Total number -1 J lattice sections

z of coefficients 4J z By

|2 |2 H
-1 -1
Polyphase implementation Lattice Structire implementation
Problem Set 4.5

1. Show that this matrix gives linear phase. Find @, b, ¢, d and H;'(z):

cos®+z7'sin®@ —sin®+z'cosO
H,,(z)=%[ +z71si +z ]

cosB® =z 'sin® ~s5in®~z'cos®

2. Suppose U and V are unitary matrices (constant but possibly complex). This means that
U =T and V' = V'. Show why their product UV is also unitary. Notice the key
point: Inverses come in reverse order ¥~/ ~! and so do transposes.

3. For a 6-tap antisymmetric filter 2 + bz™! + ¢272 — c27* — bz™* — 227, show that the flip of
one phase is minus the other phase. What if the number of taps is odd?

4. Redraw the lattice cascade with the downsampling operators moved to the right, after the but-
terfly filters. Be sure to change z~! to z72 (why?).

S. Find the product H,(z} when the rotation angles are 6§ = 0, 6, = %, and §; = 0. Check
the determinant of H ,(z), remembering the £ = 2 delays. This is an example in which H,(z)
contains no terms in z~¢, although the determinant has degree £. In the notation of Theorem
47, 8=2butd = 1.

The correct definition of degree of H,(z) is the Smith-McMillan degree = minimum number
of delays to realize the system. For orthonormal filter banks, this equals the degree ! of the
determinant.

6. Find the polyphase matrix H,(z) for the pair Ho(z) = land Hi(2) = } — 27 + 1z %in
Problem Set 4.3. Find the synthesis polyphase matrix F,(z) for Fo(z) = £ + z7' + $z~% and
F\{z) = —1. Remember to transpose and reverse rows for F(2), and compute F, (z)H ,(2).

7. We can multiply by § = [ E z ] with one multiplication by ¢ = % (and one by %

that can be collected with others at the end of the cascade):

I R |
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10.

11,

12.

. LetH,(2) = [

14.

15

-

16.

17.

18.

Write § with 3 adds using the figure. Find a “one multiplication per rotation R”.

1-k
i - ry = -
k Y
K . Y=k/(1-K)
- » ¥ -
2 multipliers 1 multiplier 1-k
2 adders 3 adders

. Find the polyphase matrix H,(z) for the analysis pair Hy(z) = 1| and H,(z) = Tlfs(_l +

9272 — 16273 + 927 — 276). Find F,(2), transposed and row reversed, for the synthesis pair
Folz) = (= 149272416249z~ — 2y and Fy(z) = —1. Verify that F,()H ,(2) = z~'1.
Note L = land £ = 3.

. What is the synthesis polyphase matrix F, for the lattice structure in the last figure?

The rules for linear phase with PR were stated separately for even and odd lengths. Combine
them into one rule for the degrees of Ho(z) and Hy(z): No + Ny + 2 must be a multiple of 4.

Change a given PR filter bank by choosing Ha(z) = Hy(z) and Hi(z) = z72H,(z). What is
the relation between H ,(z) and H,(z)? Is this new filter bank PR?

Find the analysis filters and the relation between Hy(z) and H,(2):

mo=[3 1][e 2[5 0 2102 )

Z-N

B(2)
for a PR systemn. What are the synthesis filters?

{1} :[, where A(z) is a polynomial. Find Hy(z) and H,(z). Find Fo(z)

L -1
LetH,@ =[] [ s ¢ ] Find F,»(z) and all the filters for a PR system.
k=1

What is the lowpass orthogonal filter with 8, = $.h=—-%and4; = 2?

What are the symmetric even-length analysis filters with k) = 2,k = 0,43 = —7, and ky = 5?7
What are the PR synthesis filters?

If we impose orthogonality on the symmetric factors §; in (4.72), show that the filters only have
two nonzero coefficients. This yields another proof of Theorem 5.3 that symmetry prevents
orthogonality.

1 1 1k . ; 1+k& 0 1 1
Showthat[ 1 -1 ][ P ]lsequwalentto[ 0 | — ][ 1 - ]

This form of the last two blocks in (4.72) reduces the lattice computation time.



