Introduction

The purpose of Measurement, Instrumentation, and Sensors Handbook CRCnetBase 1999 is to provide a reference that is both concise and useful for engineers in industry, scientists, designers, managers, research personnel and students, as well as many others who have measurement problems. The CD-ROM covers an extensive range of topics that comprise the subject of measurement, instrumentation, and sensors.

The CD-ROM describes the use of instruments and techniques for practical measurements required in engineering, physics, chemistry, and the life sciences. It includes sensors, techniques, hardware, and software. It also includes information processing systems, automatic data acquisition, reduction and analysis and their incorporation for control purposes.

Articles include descriptive information for professionals, students, and workers interested in measurement. Articles include equations to assist engineers and scientists who seek to discover applications and solve problems that arise in fields not in their specialty. They include specialized information needed by informed specialists who seek to learn advanced applications of the subject, evaluative opinions, and possible areas for future study. Thus, the CD-ROM serves the reference needs of the broadest group of users — from the advanced high school science student to industrial and university professionals.

Organization

The CD-ROM is organized according to the measurement problem. Section I includes general instrumentation topics, such as accuracy and standards. Section II covers spatial variables, such as displacement and position. Section III includes time and frequency. Section IV covers solid mechanical variables such as mass and strain. Section V comprises fluid mechanical variables such as pressure, flow, and velocity. Section VI covers thermal mechanical variables such as temperature and heat flux. Section VII includes electromagnetic variables such as voltage and capacitance. Section VIII covers optical variables such as photometry and image sensors. Section IX includes radiation such as x rays and dosimetry. Section X covers chemical variables in composition and environmental measurements. Section XI includes biomedical variables such as blood flow and medical imaging. Section XII comprises signal processing such as amplifiers and computers. Section XIII covers display such as cathode ray tube and recorder. Section XIV includes control such as optimal control and motion control. The Appendix contains conversion factors to SI units.

Locating Your Topic

To find out how to measure a given variable, do a word or phrase search, select the section and the chapters that describe different methods of making the measurement. Consider the alternative methods of making the measurement and each of their advantages and disadvantages. Select a method, sensor,
and signal processing method. Many articles list a number of vendors to contact for more information. You can also visit the http://www.sensorsmag.com site under Buyer’s Guide to obtain a list of vendors.

Acknowledgments

I appreciate the help of the many people who worked on this handbook. David Beams assisted me by searching books, journals, and the Web for all types of measurements, then helped me to organize the outline. The Advisory Board made suggestions for revision and suggested many of the authors. Searching the INSPEC database yielded other authors who had published on a measurement method. At CRC Press, Felicia Shapiro, Associate Production Manager; Kristen Maus, Developmental Editor; Suzanne Lassandro, Book Group Production Director; and Susan Fox, Project Editor, produced the book.

John G. Webster
Editor-in-Chief
John G. Webster received the B.E.E. degree from Cornell University, Ithaca, NY, in 1953, and the M.S.E.E. and Ph.D. degrees from the University of Rochester, Rochester, NY, in 1965 and 1967, respectively.

He is Professor of Electrical and Computer Engineering at the University of Wisconsin-Madison. In the field of medical instrumentation he teaches undergraduate and graduate courses, and does research on RF cardiac ablation and measurement of vigilance.

Dr. Webster has been a member of the IEEE-EMBS Administrative Committee and the NIH Surgery and Bioengineering Study Section. He is a fellow of the Institute of Electrical and Electronics Engineers, the Instrument Society of America, and the American Institute of Medical and Biological Engineering. He is the recipient of the AAMI Foundation Laufman-Greatbatch Prize and the ASEE/Biomedical Engineering Division, Theo C. Pilkington Outstanding Educator Award.
Advisory Board

Gene Fatton
Consultant
Loveland, Colorado

Jacob Fraden
Advanced Monitors Corporation
San Diego, California

James E. Lenz
Honeywell Technology Center
Minneapolis, Minnesota

Ramón Pallás-Areny
Universitat Politecnica de Catalunya
Barcelona, Spain

Dennis Swyt
National Institute of Standards and Technology
Gaithersburg, Maryland

Peter H. Sydenham
University of South Australia
Mawsons Lakes
South Australia
and
University College, London
London, UK

Carsten Thomsen
National Instruments
Austin, Texas
Jacques Dubéau
Centre for Research in Particle Physics
Carleton University
Ottawa, Ontario, Canada

Maria Eklund
Nynas Naphthenics AB
Nynashamn, Sweden

M.A. Elbestawi
Mechanical Engineering
McMaster University
Hamilton, Ontario, Canada

Halit Eren
Curtin University of Technology
Perth, WA, Australia

Alessandro Ferrero
Dipartimento di Elettrotecnica
Politecnico di Milano
Milano, Italy

Richard S. Figioli
Department of Mechanical Engineering
Clemson University
Clemson, South Carolina

Michael Fisch
Department of Physics
John Carroll University
University Heights, Ohio

Jacob Fraden
Advanced Monitors Corporation
San Diego, California

Randy Frank
Semiconductor Products Sector
Transportation Systems Group
Motorola, Inc.
Phoenix, Arizona

Larry A. Franks
Sandia National Laboratories
Livermore, California

Richard Frey
University of Wisconsin
Madison, Wisconsin

K. Frick
Institut für Hochfrequenztechnik,
Technische Universität Darmstadt
Muenchen, Germany

Mark Fritz
Denver Instrument Company
Arvada, Colorado

Chun Che Fung
Curtin University of Technology
Perth, WA, Australia

Alessandro Gandelli
Dipartimento di Elettrotecnica
Politecnico di Milano
Milano, Italy

John D. Garrison
San Diego State University
San Diego, California

Ivan J. Garshelis
Magna, Inc.
Pittsfield, Massachusetts

Daryl Gerke
Kimmel Gerke Associates, Ltd.
Mesa, Arizona

W.A. Gillespie
University of Abertay Dundee
Dundee, Scotland

Paolo Giordano
Rittmeyer Ltd.
Zug, Switzerland

Olaf Glük
Institut für Schicht-und Ionentechnik
Forschungszentrum Julich GmbH
Germany

Ron Goehner
The Fredericks Company
Huntington Valley, Pennsylvania

James Goh
Curtin University of Technology
Perth, WA, Australia

J.A. Gregory
Pennsylvania State University
University Park, Pennsylvania

R.E. Griffiths
Pennsylvania State University
University Park, Pennsylvania

Steven M. Grimes
Department of Physics and Astronomy
Ohio University
Athens, Ohio

G. Grueff
Institute of Radioastronomy
National Research Council
Via Fiorentina
Villa Fontano, Italy

J.Y. Gui
General Electric Research and Development Center
General Electric Company
Schenectady, New York

Anthony Guiseppi-Elie
Abtech Scientific, Inc.
Yardley, Pennsylvania

Reinhard Haak
Universitaet Erlangen--Nurnberg
Erlangen, Germany

Sean M. Hames
Duke University Medical Center
Durham, North Carolina

R. John Hansman, Jr.
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts

Daniel Harrison
Department of Physics
John Carroll University
University Heights, Ohio

H.L. Hartnagel
Institut für Hochfrequenztechnik,
Technische Universität Darmstadt
Muenchen, Germany

Bruce H. Hasegawa
University of California
San Francisco, California

Emil Hazarian
Denver Institute Company
Arvada, Colorado

© 1999 by CRC Press LLC
Kathleen M. Leonard
Department of Civil and Environmental Engineering
The University of Alabama in Huntsville
Huntsville, Alabama

Yufeng Li
Samsung Information Systems America
HDD R & D Center
San Jose, California

E. B. Loewenstein
National Instruments
Austin, Texas

Robert Lofthus
Xerox Corporation
Rochester, New York

Michael A. Lombardi
Time and Frequency Division
National Institute of Standards and Technology
Boulder, Colorado

Michael Z. Lowenstein
Harmonics Limited
Mequon, Wisconsin

Albert Lozano-Nieto
Commonwealth College
Wilkes Barre Campus
Penn State University
Lehman, Pennsylvania

D.H. Lumb
Penn State University
University Park, Pennsylvania

Christopher S. Lynch
Mechanical Engineering Department
The Georgia Institute of Technology
Atlanta, Georgia

A.M. MacLeod
School of Engineering
University of Abertay Dundee
Dundee, Scotland

Steven A. MacIntyre
MacIntyre Electronic Design
Hermont, Virginia

Tolestyn Madaj
Technical University of Gdansk
Gdansk, Poland

Kin F. Man
Jet Propulsion Lab
California Institute of Technology
Pasadena, California

Dimitris E. Manolakis
Department of Automation
Technological Education Institute
Thessaloniki, Greece

Robert T. Marcus
Datagroup International
Middletown, New Jersey

S. Mariotti
Institute of Radioastronomy
National Research Council Italy
Villa Fontano, Italy

Wade M. Mattar
The Foxboro Company
Foxboro, Massachusetts

J.R. René Mayer
Mechanical Engineering
Ecole Polytechnique de Montreal
Montreal, Quebec, Canada

Edward McConnell
Data Acquisition
National Instruments
Austin, Texas

P.F. Martin
University of Abertay Dundee
Dundee, Scotland

Robert T. McGrath
Department of Engineering Science and Mechanics
Pennsylvania State University
University Park, Pennsylvania

John McInroy
Department of Electrical Engineering
University of Wyoming
Laramie, Wyoming

Douglas P. McNutt
The MacNauchtan Laboratory
Colorado Springs, Colorado

G.H. Meeten
Department of Fluid Chemistry and Physics
Schlumberger Cambridge Research Laboratory
Cambridge, England

Adrian Melling
Universitaet Erlangen–Nuernberg
Erlangen, Germany

Rajan K. Menon
Laser Velocimetry Products
TSI Inc.
St. Paul, Minnesota

Hans Mes
Centre for Research in Particle Physics
Carleton University
Ottawa, Ontario, Canada

John Mester
W.W. Hansen Experimental Physics Laboratory
Stanford University
Stanford, California

Jaroslaw Mikielewicz
Institute of Fluid Flow Machinery
Gdansk, Poland

Harold M. Miller
Data Industrial Corporation
Mattapoisett, Massachusetts

Mark A. Miller
Naval Research Laboratory
Washington, D.C.

Jeffrey P. Mills
Illinois Institute of Technology
Chicago, Illinois

© 1999 by CRC Press LLC
Devendra Misra
Electrical Engineering and Computer Science Department
University of Wisconsin–Milwaukee
Milwaukee, Wisconsin

William C. Moffatt
Sandia National Laboratories
Livermore, California

Stelio Montebugnoli
Institute of Radioastronomy
National Research Council
Villa Fontano, Italy

Roger Morgan
School of Engineering
Liverpool John Moores University
Liverpool, England

Armelle M. Moulin
University of Cambridge
Cambridge, England

Jerry Murphy
Electronic Measurements Division
Hewlett-Packard
Colorado Springs, Colorado

Steven A. Murray
SPAWAR Systems Center
San Diego, California

Soo-Mie F. Nee
Research and Technology Division
U.S. Naval Air Warfare Center
China Lake, California

Nam-Trung Nguyen
Berkeley Sensor and Actuator Center
University of California at Berkeley
Berkeley, California

J.V. Nicholas
The New Zealand Institute for Industrial Research and Development
Lower Hutt, New Zealand

Seiji Nishifuji
Electrical and Electronic Engineering
Yamaguchi University
Ube, Japan

John A. Nousek
Department of Astronomy and Astrophysics
Pennsylvania State University
University Park, Pennsylvania

David S. Nyce
MTS Systems Corp.
Cary, North Carolina

Peter O’Shea
Department of Computer and Electrical Engineering
Royal Melbourne Institute of Technology
Melbourne, Victoria, Australia

F. Gerald Oakham
Centre for Research in Particle Physics
Carleton University
Ottawa, Ontario, Canada

P. Åke Öberg
Department of Biomedical Engineering
Linköping University Hospital
Linköping, Sweden

Chima Okereke
Independent Consultant
Formerly of Department of Electronic and Electrical Engineering
University of Bradford
Bradford, W. Yorkshire, U.K.

John G. Olin
Sierra Instruments, Inc.
Monterey, California

A. Orfei
Institute of Radioastronomy
National Research Council
Via Fiorentina
Villa Fontano, Italy

P. Ottonello
Dipartimento di Fisica
Università di Genova
Genova, Italy

M. Pachtler
Air Force Institute of Technology
Wright–Patterson AFB, Ohio

Behrooz Pahlavanpour
The National Grid Company
Leatherhead, Surrey, England

Ramón Pallás-Areny
Universitat Politècnica de Catalunya
Barcelona, Spain

Ronney B. Panerai
University of Leicester
Leicester Royal Infirmary
Leicester, U.K.

Franco Pavese
CNR
Istituto di Metrologia “G. Colonnetti”
Torino, Italy

Peder C. Pedersen
Electrical and Computer Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts

Teklic Ole Pedersen
Linköping Universitet
Linköping, Sweden

B.W. Petley
National Physical Laboratory
Middlesex, U.K.

Rekha Philip-Chandy
School of Engineering
Liverpool John Moores University
Liverpool, England

Thad Pickenpaugh
AFRL/SNHI
Wright–Patterson AFB, Ohio

Charles P. Pinney
Pinney Technologies, Inc.
Albuquerque, New Mexico

Luca Podestà
University of Rome “La Sapienza”
Rome, Italy
Section I Measurement Characteristics

2. Operational Modes of Instrumentation Richard S. Figliola
3. Static and Dynamic Characteristics of Instrumentation Peter H. Sydenham
4. Measurement Accuracy Ronald H. Dieck
5. Measurement Standards DeWayne B. Sharp

Section II Spatial Variables Measurement

6. Displacement Measurement, Linear and Angular
 6.1 Resistive Displacement Sensors Keith Antonelli, James Ko, and Shyan Ku
 6.2 Inductive Displacement Sensors Halit Eren
 6.3 Capacitive Sensors—Displacement Halit Eren and Wei Ling Kong
 6.4 Piezoelectric Transducers and Sensors Ahmad Safari, Victor F. Janas, Amit Bandyopadhyay, and Andrei Khokline
 6.5 Laser Interferometer Displacement Sensors Bernhard Günther Zagar
 6.6 Bore Gaging Displacement Sensors Viktor P. Astakhov
 6.7 Time-of-Flight Ultrasonic Displacement Sensors Teklic Ole Pedersen and Nils Karlsson
 6.8 Optical Encoder Displacement Sensors J. R. René Mayer
 6.9 Magnetic Displacement Sensors David S. Nyce
 6.10 Synchro/Resolver Displacement Sensors Robert M. Hyatt, Jr. and David Dayton
 6.11 Optical Fiber Displacement Sensors Richard O. Claus, Vikram Bhatia, and Anbo Wang
 6.12 Optical Beam Deflection Sensing Grover C. Wetsel
7 Thickness Measurement John C. Brasunas, G. Mark Cushman, and Brook Lake

8 Proximity Sensing for Robotics R.E. Saad, A. Bonen, K.C. Smith, and B. Benhabib

9 Distance W. John Ballantyne

10 Position, Location, Altitude Measurement
 10.1 Altitude Measurement Dimitris E. Manolakis
 10.2 Attitude Measurement Mark A. Stedham, Partha B. Banerjee, Seiji Nishfuji, and Shogo Tanaka
 10.3 Inertial Navigation Halit Eren and C.C. Fung
 10.4 Satellite Navigation and Radiolocation Halit Eren and C.C. Fung
 10.5 Occupancy Detection Jacob Fraden

11 Level Measurement Detlef Brumbi

12 Area Measurement Charles B. Coulbourn and Wolfgang P. Buerner

13 Volume Measurement René G. Aarnink and Hessel Wijkstra

14 Angle Measurement Robert J. Sandberg

15 Tilt Measurement Adam Chrzanowski and James M. Secord

16 Velocity Measurement Charles P. Pinney and William E. Baker

17 Acceleration, Vibration, and Shock Measurement Halit Eren

Section III Time and Frequency Measurement

18 Time Measurement Michael A. Lombardi

19 Frequency Measurement Michael A. Lombardi

Section IV Mechanical Variables Measurement — Solid

20 Mass and Weight Measurement Mark Fritz and Emil Hazarian

21 Density measurement Halit Eren
22 Strain Measurement Christopher S. Lynch
23 Force Measurement M.A. Elbestawi
24 Torque and Power Measurement Ivan J. Garshelis
25 Tactile Sensing R.E. Saad, A. Bonen, K. C. Smith, and B. Benhabib

V Mechanical Variables Measurement — Fluid

26 Pressure and Sound Measurement
26.1 Pressure Measurement Kevin H.-L. Chau
26.3 Ultrasound Measurement Peder C. Pedersen

27 Acoustic Measurement Per Rasmussen

28 Flow Measurement
28.1 Differential Pressure Flowmeters Richard Thorn
28.2 Variable Area Flowmeters Adrian Melling, Herbert Köchner, and Reinhard Haak
28.3 Positive Displacement Flowmeters Zaki D. Husain and Donald J. Wass
28.4 Turbine and Vane Flowmeters David Wadlow
28.5 Impeller Flowmeters Harold M. Miller
28.6 Electromagnetic Flowmeters Halit Eren
28.7 Ultrasonic Flowmeters Hans-Peter Vaterlaus, Thomas Hossle, Paolo Giordano, and Christophe Bruttin
28.8 Vortex Shedding Flowmeters Wade M. Mattar and James H. Vignos
28.9 Thermal Mass Flow Sensors Nam-Trung Nguyen
28.10 Coriolis Effect Mass Flowmeters Jesse Yoder
28.11 Drag Force Flowmeters Rekha Philip-Chandy, Roger Morgan, Patricia J. Scully

29 Point Velocity Measurement
29.1 Pitot Probe Anemometry John A. Kleppe
29.2 Thermal Anemometry John G. Olin
29.3 Laser Anemometry Rajan K. Menon

30 Viscosity Measurement G. E. Leblanc, R. A. Secco, M. Kostic

31 Surface Tension Measurement David B. Thiessen, Kin F. Man

© 1999 by CRC Press LLC
VI Mechanical Variables Measurement — Thermal

32 Temperature Measurement
 32.1 Bimaterials Thermometers Robert J. Stephenson, Armelle M. Moulin, and Mark E. Welland
 32.2 Resistive Thermometers Jim Burns
 32.3 Thermistor Thermometers Meyer Sapoff
 32.4 Thermocouple Thermometers R. P. Reed
 32.5 Semiconductor Junction Thermometers Randy Frank
 32.6 Infrared Thermometers Jacob Fraden
 32.7 Pyroelectric Thermometers Jacob Fraden
 32.8 Liquid-in-Glass Thermometers J.V. Nicholas
 32.9 Manometric Thermometers Franco Pavese
 32.10 Temperature Indicators Jan Stasiek, Tolestyn Madaj, Jaroslaw Mikielewicz
 32.11 Fiber-Optic Thermometers Brian Culshaw

33 Thermal Conductivity Measurement
 William A. Wakeham and Marc J. Assael

34 Heat Flux Thomas E. Diller

35 Thermal Imaging Herbert M. Runciman

36 Calorimetry Measurement Sander van Herwaarden

VII Electromagnetic Variables Measurement

37 Voltage Measurement
 37.1 Meter Voltage Measurement Alessandro Ferrero
 37.2 Oscilloscope Voltage Measurement Jerry Murphy
 37.3 Inductive Capacitive Voltage Measurement Cipriano Bartoletti, Luca Podestà, and Giancarlo Sacerdoti

38 Current Measurement Douglas P. McNutt

39 Power Measurement Pasquale Arpaia, Francesco Avallone, Aldo Baccigalupi, Claudio De Capua, Carmine Landi

40 Power Factor Measurement Michael Z. Lowenstein

41 Phase Measurement Peter O’Shea
42 Energy Measurement Arnaldo Brandolini and Alessandro Gandelli
43 Electrical Conductivity and Resistivity Michael B. Heaney
44 Charge Measurement Saps Buchman, John Mester, and T. J. Sumner
45 Capacitance and Capacitance Measurements Halit Eren and James Goh
46 Permittivity Measurement Devendra K. Misra
47 Electric Field Strength David A. Hill and Motohisa Kanda
48 Magnetic Field Measurement Steven A. Macintyre
49 Permeability and Hysteresis Measurement Jeff P. Anderson and Richard J. Blotzer
50 Inductance Measurement Michal Szyper
51 Impedance Measurement Achim Dreher
52 Q Factor Measurement Albert D. Helfrick
53 Distortion Measurement Michael F. Toner and Gordon W. Roberts
54 Noise Measurement W. Marshall Leach, Jr.
55 Microwave Measurement A. Dehé, K. Beilenhoff, K. Fricke, H. Klingbeil, V. Krozer, H. L. Hartnagel

VIII Optical Variables Measurement

56 Photometry and Radiometry
 56.1 Photoconductive Sensors Fritz Schuermeyer and Thad Pickenpaugh
 56.2 Photojunction Sensors Michael R. Squillante and Kanai S. Shah
 56.3 Charge-Coupled Devices J.A. Nousek, M.W. Bautz, B.E. Burke, J.A. Gregory, R.E. Griffiths, R.L. Kraft, H.L. Kwok, D.H. Lumb

57 Densitometry Measurement Joseph H. Altman
58 Colorimetry Robert T. Marcus
Optical Loss Halit Eren
Polarization Measurement Soe-Mie F. Nee
Refractive Index Measurement G. H. Meeteen
Turbidity Measurement Daniel Harrison and Michael Fisch
Laser Output Measurement Haiyin Sun
Vision and Image Sensors Stanley S. Ipson and Chima Okereke

IX Radiation Measurement

Radioactivity Measurement Bert M. Coursey
Radioactivity Measurement Larry A. Franks, Ralph B. James, and Larry S. Darken
Charged Particle Measurement John C. Armitage, Madhu S. Dixit, Jacques Dubeau, Hans Mes, and F. Gerald Oakham
Neutron Measurement Steven M. Grimes
Dosimetry Measurement Brian L. Justus, Mark A. Miller, and Alan L. Huston

X Chemical Variables Measurement

Composition Measurement
70.1 Electrochemical Composition Measurement Michael J. Schöning, Olaf Glück, and Marion Thust
70.2 Thermal Composition Measurement Mushtaq Ali, Behrooz Pahlavanpour, and Maria Eklund
70.3 Kinetic Methods E.E. Uzgiris and J.Y. Gui
70.4 Chromatography Composition Measurement Behrooz Pahlavanpour, Mushtaq Ali, and C.K. Laird

pH Measurement Norman F. Sheppard, Jr. and Anthony Guiseppi–Elie
Humidity and Moisture Measurement Gert J.W. Vischer
73 Environmental Measurement
73.1 Meteorological Measurement John D. Garrison and Stephen B. W. Roeder
73.2 Air Pollution Measurement Michael Bennett
73.3 Water Quality Measurement Kathleen M. Leonard
73.4 Satellite Imaging and Sensing Jacqueline Le Moigne and Robert F. Cromp

XI Biomedical Variables Measurement

74 Biopotentials and Electrophysiology Measurement Nitish V. Thakor
75 Blood Pressure Measurement Shyam Rithalia, Mark Sun, and Roger Jones
76 Blood Flow Measurements Per Ask and P. Åke Öberg
77 Ventilation Measurement L. Basano and P. Ottonello
78 Blood Chemistry Measurement Terry L. Rusch and Ravi Sankar
79 Medical Imaging James T. Dobbins III, Sean M. Hames, Bruce H. Hasegawa, Timothy R. DeGrado, James A. Zagzebski, and Richard Frayne

XII Signal Processing

80 Amplifiers and Signal Conditioners Ramón Pallás-Areny
81 Modulation David M. Beams
82 Filters Rahman Jamal and Robert Steer
83 Spectrum Analysis and Correlation
83.1 FFT Spectrum Analysis and Correlation Ronney B. Panerai
83.2 RF/Microwave Spectrum Analysis A. Ambrosini, C. Bortolotti, N. D’Amico, G. Grueff, S. Mariotti, S. Montebognoli, A. Orfe, and G. Tomassetti

84 Applied Intelligence Processing Peter H. Sydenham and Rodney Pratt
85 Analog-to-Digital Converters E. B. Loewenstein
86 Computers A. M. MacLeod, P. F. Martin, and W.A. Gillespie
87 Telemetry Albert Lozano-Nieto
88 Sensor Networks and Communication Robert M. Crovella
89 Electromagnetic Compatibility
89.1 Grounding and Shielding in Industrial Electronic Systems Daryl Gerke, and William Kimmel
89.2 EMI and EMC Test Methods Jeffrey P. Mills

XIII Displays

90 Human Factors in Displays Steven A. Murray, Barrett S. Caldwell
91 Cathode Ray Tube Displays Christopher J. Sherman
92 Liquid Crystal Displays Kalluri R. Sarma
93 Plasma-Driven Flat Panel Displays Robert T. McGrath, Ramanapathy Veerasingam, William C. Moffatt, and Robert B. Campbell
94 Electroluminescent Displays William A. Barrow
95 Light-Emitting Diode Displays Mohammad A. Karim
96 Reading/Recording Devices
96.1 Graphic Recorders Herman Vermariën
96.2 Data Acquisition Systems Edward McConnell
96.3 Magnetic and Optical Recorders Yufeng Li

XIV Control

97 PID Control F. Greg Shinkey
98 Optimal Control Halit Eren
99 Electropneumatic and Electrohydraulic Instruments: Modeling of Electrohydraulic and Electrohydrostatic Actuators M. Pachter and C. H. Houpis
100 Explosion-Proof Instruments Sam S. Khalilieh